
The Project is co-financed by the European Union from resources of the European Social Fund

COMPUTATIONAL METHODS 
IN  DATA ANALYSIS
COMPUTATIONAL METHODS 
IN  DATA ANALYSIS

INSTITUTE OF COMPUTER SCIENCE 
P O L I S H  AC A D E M Y  O F  S C I E N C E S
INSTITUTE OF COMPUTER SCIENCE 
P O L I S H  AC A D E M Y  O F  S C I E N C E S

ITRIA 2015 
ITR

IA
 2015

ISBN 978-83-63159-22-1

KAPITAŁ LUDZKI
NARODOWA STRATEGIA SPÓJNOŚCI

UNIA EUROPEJSKA
EUROPEJSKI

FUNDUSZ SPOŁECZNY

C
O

M
PU

TA
T

IO
N

A
L M

ET
H

O
D

S IN
  D

A
TA

 A
N

A
LY

SIS





Publication issued as a part of the project:
“Information technologies: research and their interdisciplinary applications”, 
Objective 4.1 of Human Capital Operational Programme.
Agreement number UDA-POKL.04.01.01-00-051/10-01.

Publication is co-financed by European Union from resources of European Social Fund.

Project leader: Institute of Computer Science, Polish Academy of Sciences

Project partners: System Research Institute, Polish Academy of Sciences, Nałęcz
Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences

Reviewers: 

Publication is distributed free of charge

ISBN  978-83-63159-22-1

Layout: Grzegorz Murzynowski 
Cover design: Waldemar Słonina

©Copyright by Institute of Computer Science, Polish Academy of Sciences, 2015

Michał Baczyński
Piotr Bogorodzki
Michał Dąbrowski
Przemysław Klęsk
Henryk Komorowski
Jacek Koronacki
Marcin Korzeń
Mikołaj Morzy 
Zbigniew Nahorski  
Paweł Teisseyre    
Ewa Szczurek 
Rafał Weron 



Table of Contents

Clustering and Aggregation of Informetric Data Sets . . . . . . . . . . . 5
Anna Cena, Marek Gągolewski

Review on Sensitivity Analysis in Biochemical Models . . . . . . . . . . 27
Agata Charzyńska

Approximate Bayesian Computation Methods in the
Localization of Atmospheric Contamination Sources in an
Urban Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Piotr Kopka, Anna Wawrzyńczak, Mieczyslaw Borysiewicz

Modified Concentric Rings Trajectory (cCR) in
Hyperpolarized 13C Magnetic Resonance Spectroscopy
Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Kamil Lorenc, Christoffer Laustsen, Hans Stødkilde-Jørgensen, Rolf F Schulte

Modeling Vague Preferences in Recommender Systems . . . . . . . . . 77
Paweł P. Ładyżyński, Przemysław Grzegorzewski

On the Use of BOWA Operators in Cluster Analysis for
Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Hanna Łącka

Modelling Spot Prices on the Polish Power Exchange . . . . . . . . . . . 103
Michał Pawłowski, Piotr Nowak

Personalised Simulation of Haemodynamic Response to the
Valsalva Manoeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Leszek Pstraś, Karl Thomaseth, Jacek Waniewski

Boosting Techniques for Uplift Modelling . . . . . . . . . . . . . . . . . . . . . . . 135
Michał Sołtys, Szymon Jaroszewicz

Selection Consistency of GIC for Small-n-Large-p Sparse
Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Hubert Szymanowski, Jan Mielniczuk

Distributional Proteomics: Modelling Amino Acid
Relationships by Measuring Their Patterns of Statistical
Occurrence Across Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Marcin Tatjewski, Dariusz Plewczyński



Uplift Modelling Using Kernel Support Vector Machines . . . . . . . 183
Łukasz Zaniewicz, Szymon Jaroszewicz

Evaluating Multi-level Machine Learning Prediction of
Protein-protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Julian Zubek, Marcin Tatjewski, Subhadip Basu, Dariusz Plewczynski

Geometric Approach to Stepwise Regression . . . . . . . . . . . . . . . . . . . . 213
Barbara Żogała-Siudem, Szymon Jaroszewicz



Clustering and Aggregation of Informetric Data
Sets

Anna Cena1, 2 and Marek Gągolewski1, 3

1 Systems Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01-447 Warsaw, Poland

2 Warsaw University of Technology, Faculty of Mathematics and Information
Science,
ul. Koszykowa 75, 00-662 Warsaw, Poland

Abstract. This paper presents recent developments on clustering al-
gorithms designed to deal with numeric strings, i.e., non-increasingly
ordered numeric vectors of possible varying lengths. Such objects can
be found in real-world data sets in the field of informetrics. Investigation
carried out in this paper focuses on partitional clustering algorithms. The
genetic approach proposed in this paper as well as the K-means algorithm
introduced previously are investigated from, both, machine learning and
aggregation theory perspective. Also, a projection of original data into a
space of fixed number of indices is considered.

1 Introduction

Informetrics is an active field of research, which mostly deals with measurable
aspects of information processes. One of the main informetric tasks is the so
called Producers Assessment Problem (PAP) in which we would like to evaluate
a set of producers of information resources according to, both, the quantity of
information they output and its quality. PAP is often identified with bibliomet-
rics, where a scientist is a producer and scientific articles he/she published are
products. Moreover, the quality of each paper is often measured by the num-
ber of citation it received. However, application of PAP exceeds beyond that.
Let us consider for example on-line social networking services, like “Facebook”,
“Twitter” or “Stack Exchange”. Each active user is a producer of new informa-
tion items that are assessed by the members of the on-line community (cf., e.g.,
“Like”, “Share”, “Follow”, “UpVote”, or “DownVote” buttons).

The nature of informetric data may be situated “somewhere between” mul-
tidimensional real data and the character string domain. On the one hand, ob-
servations are real numbers but, on the other, their number is not established
a priori. Informetric data sets consisting of non-increasingly ordered vectors of
unequal lengths are examples of numeric strings [1]. Most often, such vectors
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are analyzed by the means of aggregation theory [3], for example with various
bibliometric indexes [4,5]. Recently, the usage of unsupervised machine learning
techniques in the field of informetrics is studied too.

In this paper we focus on various clustering algorithms that may be applied on
informetric data in order to automatically discover diverse groups of producers.
Such methods are crucial not only in identification and/or description of certain
groups of producers (productive, high impact, low impact, etc. ones), but also
may be used in automated informetric decision support systems.

One of the possible approaches to apply clustering techniques on vectors of
nonconforming lengths is to reduce the data dimension by considering a fixed
number of attributes or indicators, see, e.g., [6,7]. Please note that such an ap-
proach has, however, some limitations, like for instance arbitrariness in the choice
of considered indexes and their quantity, unstable behavior of some bibliometric
indexes when it comes to input data transformation, etc. On the other hand, in
[8] a class of modified metrics was proposed so that they can be applied on vectors
of nonconforming lengths. Owing to that, i.a., hierarchical clustering algorithms
may be used in order to determine an input data set’s partition consisting of
sets of homogeneous producers. What is more, a K-means-like algorithm together
with a more general c-means algorithm based on modified dissimilarity measure
were proposed and studied in [2,9], respectively.

In this paper we extend the mentioned results. First of all, connections be-
tween the modified clustering techniques for informetric data and aggregation
theory are investigated. The notion of cluster centers as an aggregated represen-
tation of all vectors from a given cluster was partially studied in [9]. Nevertheless,
that study is far from being complete. Moreover, please note that the k-means
algorithm is just a heuristic and therefore, especially for unbalanced data, may
return results far from being optimal. Thus, in this paper a genetic algorithm
designed for informetric data clustering is proposed and studied as well. In the
second place, a comparative study of various informetric data sets (e.g. Stack
Exchange data base, dependency network of R packages, Elsevier’s Scopus ci-
tations base) including proposed procedures and mentioned above projection to
fixed number of indexes approach is presented.

The paper is organized as follows: Sec. 2 reviews the recent results concerning
clustering algorithms for informetric data and proposes a new genetic solution.
Next, in Sec. 3 the empirical analysis is performed. Finally, Sec. 4 concludes the
paper and gives a future research results.

2 Clustering

Clustering techniques are usually classified as either partitional or hierarchical
[12]. The former class of algorithms directly divide data points into some pre-
defined number of clusters, see, e.g., the k-means procedure, while the latter
class of methods determines the whole hierarchy of possible data partition-
ing schemes, level by level, which may be cut at an arbitrary height. Both
groups, however, require the definition of the measure that can be used to as-
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sess the dissimilarity between observations. Classically, this is achieved with
the notion of a metric, i.e., a function d : X × X → [0,∞) such that for
any x,y, z ∈ X it holds: (a) d is symmetric, (b) d fulfills the triangle in-
equality, i.e. d(x,y) ≤ d(x, z) + d(z,y), and (c) d(x,y) = 0 if and only if
x = y. Consider for example the well known Minkowski distance given by

d(x,y) =
(∑n

i=1 |xi − yi|p
)1/p

, for x,y ∈ Rn, p ≥ 1. Please note that for p = 1,
Minkowski distance is simply the Manhattan distance dL1 =

∑n
i=1 |xi− yi|, and

for p = 2 the Euclidean distance dL2
=
(∑n

i=1 |xi− yi|2
)1/2

. Let us note that if
ν : X ×X → [0,∞) is a function such that fulfills (a), (b), and a relaxed version
of (c), namely, (x = y) =⇒ ν(x,y) = 0, then ν is called a pseudometric.

As it was stated above, the considered informetric data may be situated
“somewhere between” multidimensional real data and the character string do-
main. On the one hand, observations are on the interval scale but, on the other,
their quantity is not established a priori. Therefore, the distance function that
can capture the similarity/dissimilarity between such objects shall be introduced.

Let S := {(x1, . . . , xn) ∈
⋃
n≥1 Rn : x1 ≥ x2 ≥ · · · ≥ xn} denote the

space of non-increasingly ordered numeric vectors of arbitrary length and X =

{x(1),x(2), . . . ,x(l)}, where x(i) =
(
x
(i)
1 , . . . , x

(i)
ni

)
for all i = 1, . . . , l, its fi-

nite subset representing input data points. Moreover, let Sn = {(x1, . . . , xn) ∈
Rn, x1 ≥ · · · ≥ xn} denote the subset of S consisting of vectors of length n and
S≤n =

⋃n
i=1 Si, n ∈ N the subset of S with vectors of length not greater than

n. It is clear to see, that X ⊂ S≤m, where m = max{|x|; x ∈ X}. The follow-
ing theorem (see [8] for the proof) defines the class of metrics on S≤m, for any
m ∈ N.

Theorem 1. (Cena, Gągolewski, Mesiar [8]) Let dM : S≤m ×S≤m → [0,∞) be
such that dM (x,y) = d(x̃, ỹ)+ν(x,y), where x̃ = (x1, x2, . . . , xn, 0, . . . , 0) ∈ Sm,
d is a metric on Rm and ν is a pseudo-metric on S≤m. Then dM is a metric on
S≤m if and only if for all x,y such that x̃ = ỹ it holds ν(x,y) = 0 =⇒ nx = ny,
where nx = |x| and ny = |y|, denote the length of x and y, respectively.

In practice, the pseudometric ν might be defined only in terms of vectors’
lengths, e.g., for x,y ∈ S, νp,q(x,y) = p|nrx − nry|.

Remark 1. It is easily seen that the dM metric defined as dM (x,y) = dL1
(x̃, ỹ)+

ν1,1(x,y) can be decomposed as follows:

dM (x,y) =

min{nx,ny}∑
i=1

|xi−yi|+
nx∑

i=min{nx,ny}+1

|xi|+
ny∑

i=min{nx,ny}+1

|yi|+|nx−ny|,

with the convention
∑v
i=u · = 0 for u > v. Hence, dM is in fact a sum of the

distance between the first min{nx, ny} largest observations plus a norm of the
remaining observations in the longer vector (which is the same as the distance
to a vector 0 with zeros at each coordinate) plus some penalty for the difference
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in vectors’ lengths. This raises the association with the Levenshtein distance for
strings [1,13], defined as minimal number of single character insertions, deletions
and replacements needed to obtain one string form another and provides an
appealing interpretation of the proposed solution.

Remark 2. It is easily seen that the dissimilarity measure dD : S≤m × S≤m →
[0,∞), i.e., function fulfilling conditions (a) and (c), but not (b) – triangle in-
equality, can be defined in the manner presented in Theorem 1, i.e., dD(x,y) =
d′(x̃, ỹ)+ν(x,y), were d′ is a dissimilarity measure on Rm and ν is pseudometric
on S≤m.

2.1 K-means-like algorithm

Classically, in the Euclidean space a partitional clustering task can be defined as
follows. Given a set of observations Y = {y(1), . . . ,y(l)}, where each y(i) ∈ Rn,
we aim at partitioning the l observations into k nonempty pairwise disjoint sets
C = {C1, C2, . . . , Ck},

⋃k
i=1 Ci = Y, so that:

C = argmin
partition C of Y

k∑
i=1

∑
y∈Ci

d2L2

(
y,µ(i)

)
, (1)

where µ(i) is the centroid of all the vectors in Ci, µ
(i)
j =

∑
y∈Ci yj/|Ci|, and

d2L2
(y,µ) =

∑n
j=1(yj − µj)2 is the squared Euclidean distance.

As the problem stated in Eq. (1) is known to be NP-complete [14], the fol-
lowing heuristic – K-means algorithm, see [15], may be used. For the initial set
of cluster centers, do what follows until convergence occurs:

1. Assign each point in Y to the cluster with the nearest center,
2. Recalculate cluster centers by computing the means µ(1), . . . ,µ(k) of all the

points assigned to particular clusters.

dD;p,q-centroid In the informetric settings, we may consider the dissimilarity
measure based on squared Euclidean distance, i.e.,

dD;p,q(x,y) = d2L2
(x̃, ỹ) + p|nrx − nry|.

Therefore Eq. (1) can be redefined as

C = argmin
partition C of Y

k∑
i=1

∑
y∈Ci

dD;p,q

(
y,µ(i)

)
, (2)

where µ(i) ∈ S is a centroid of Ci. Thus, in order to derive a K-means like
procedure for informetric data, first we have to provide a method for computing
a dD;p,q-centroid of a set of vectors X = {x(1), . . . ,x(l)} ⊆ S, i.e.,

µ = argmin
µ∈S

l∑
i=1

dD;p,q(x
(i),µ) := argmin

µ∈S
F (µ). (3)
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In [2] it was shown that the length of µ which is a minimizer of F cannot be
greater than m and, hence, the task defined via Eq. (3) can be decomposed as
follows. For n = 1, . . . ,m determine:

µ(n) = argmin
µ∈Sn

F (µ) (4)

and then compute:
µ = argmin

n=1,...,m
F (µ(n)). (5)

Please note that the problem defined by Eq. (4), is in fact a constrained
optimization problem, as our search space consists of vectors that are sorted
non-increasingly: we have that µ(n)

1 ≥ µ(n)
2 ≥ · · · ≥ µ(n)

n .
To present the solution to Eq. (4) given in [2], let us recall the notion of a

contiguous partition of an index set [n] := {1, 2, . . . , n}, that is a set of nonempty,
disjoint sets of consecutive elements in [n]. In other words, P ⊆ 2[n] is a con-
tiguous partition of [n] if

⋃
P∈P = [n], P ∩ P ′ = ∅, |P | > 0, {i, j} ∈ P with

i ≤ j implies that i + 1, i + 2, . . . , j − 1 ∈ P for all P 6= P ′. The whole class of
such contiguous partitions will from now on be denoted as CP([n]). It might be
shown that |CP([n])| = 2n−1. For example, we have:

CP([3]) =


{
{1}, {2}, {3}

}
,{

{1, 2}, {3}
}
,{

{1}, {2, 3}
}
,{

{1, 2, 3}
}

 .

Given P ∈ CP([n]) and i ∈ [n], let P{i} stand for an element in P such that
i ∈ P{i}. Moreover, let P (i) be the ith ordered element in P, i.e., such that for
1 ≤ i < j ≤ |P| it holds maxP (i) < minP (j). Assuming that x̃i =

∑
x:|x|≥i xi

we have what follows (see [2] for the proof).

Theorem 2. (Cena, Gągolewski [2]) Fix n ∈ [m] and let P ∈ CP([n]). Define
y ∈ Rn as:

yi =
1

l|Pi|
∑
j∈Pi

x̃j for i = 1, . . . , n.

If y1 ≥ y2 ≥ · · · ≥ yn and for all i ∈ [n] with i ∈ (P{i} \ {maxP{i}}) we have

i−min P{i} + 1

|P{i}|
∑
j∈P{i}

x̃j −
∑

j∈P{i},j≤i

x̃j > 0,

then y is a solution to Eq. (4).

Theorem 2 induces a simple algorithm to determine µ(n) ∈ Sn. One may con-
sider every possible contiguous partition of [n] and then verify if the conditions
listed in the theorem are met.
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Example 1. Let us consider a simple exemplary set consisting of three vectors
of the form:

X =

 ( 7, 5, 1, 0, 0 ),
( 1, −2, −5 ),
( −12 )

 .

It is easily seen that the maximum of vectors’ lengths is equal to m = 5. Based
on the procedure provided by Theorem 2, let us derive the dD;1,1-centroid of
length n = 3. The vector x̃ is of the form (−4, 3,−4). As it was stated above, in
order to do so, we have to consider all contiguous partitions of a set [n]:

(i) P = {{1}, {2}, {3}}; Here the candidate solution is of the form y =
(−1 1

3 , 1,−1
1
3 ) and it is clear to see that this solution does not fulfill re-

quired ordering.
(ii) P = {{1, 2}, {3}}; Thus, y = (− 1

6 ,−
1
6 ,−1

1
3 ). Since the vector y is non-

increasingly ordered, we have to check the optimality conditions: 1
2 (−4 +

3) + 4 = 3.5 > 0.
(iii) P = {{1}, {2, 3}}; Therefore y = (−1 1

3 ,−
1
6 ,−

1
6 ). Since, the ordering is not

preserved, this candidate solution is rejected.
(iv) P = {{1, 2, 3}}; Here y = (− 5

9 ,−
5
9 ,−

5
9 ) with conditions 1

2 (−4 + 3) + 4 =
3.5 > 0 and 1

3 (−4+ 3− 4) + (−4+ 3) = −2 2
3 < 0. As the second condition

is not fulfilled, this candidate solution has to be rejected.

Therefore, the solution is equal to y = (− 1
6 ,−

1
6 ,−1

1
3 )

Such a routine, being of course mathematically correct, is unfortunately prac-
tically unusable. Therefore, to solve Eq. (4), the algorithm which runs in O(n2)
time, see the Algorithm 1, was proposed and the following theorem holds (see
[2] for more details and the proof):

Theorem 3. (Cena, Gągolewski [2]) Fix n and let X = {x(1), . . . ,x(l)}. If y is
the result of applying Algorithm 1, then y = argminy∈Sn F (y).

Example 2. Let us again focus on a data set discussed in Example 1. Here is the
output of Algorithm 1 for each n = 1, 2, . . . , 5. The optimal solution is obtained
for n = 3.

xtilde= | -1.333 1.000 -1.333 0.000 0.000
---------- | --------------------------------------------
n dist | y1 y2 y3 y4 y5
1 249.67 | -1.333
2 253.83 | -0.167 -0.167
3 *247.50* | -0.167 -0.167 -1.333
4 251.17 | -0.167 -0.167 -0.667 -0.667
5 253.06 | -0.167 -0.167 -0.444 -0.444 -0.444

Moreover, the generalization of Theorem 2 and Theorem 3 to a fuzzy clus-
tering was derived and discussed in [9].
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Data: A set of l vectors X ⊂ S(I) and n ∈ N.
Result: µ(n) = argminµ∈SnF (µ).
Let x̃ be such that x̃i =

∑
x:|x|≥i xi, i ∈ [n];

Let P = ∅;
Let y ∈ Rn;
for k = 1, 2, . . . , n do

yk = x̃k/l;
Let P := P ∪

{
{k}
}
;

while |P| > 1 and yminP (|P|) > ymaxP (|P|−1) do
P :=

((
P \ {P (|P|)}

)
\ {P (|P|−1)}

)
∪ {P (|P|) ∪ P (|P|−1)};

for i ∈ P (|P|) do
Set yi := 1

l|P (|P|)|

∑
j∈P (|P|) x̃j ;

end
end

end
return y;

Algorithm 1: An algorithm to solve Eq. (4).

Properties of the dD;p,q-centroid In the context of aggregation theory, the proce-
dure of determining the dD;p,q-centroid is a fusion function in sense of [1,10,11],
which combines a set of objects into an representative object of the same type.

Definition 1. Let F : Sl → S be a fusion function such that

F(x(1), . . . ,x(l)) = argmin
µ∈S

l∑
i=1

dD;p,q(x
(i),µ). (6)

Please note that F may be computed via Algorithm 1. Let us now consider
basic properties proposed in [1] suitable for such functions.

Remark 3. (Cena, Gągolewski [9]) Unfortunately, the function F defined by
Eq. (6) is not a E-monotonic fusion function, where E is the partial ordering:

x ∈ Sn E y ∈ Sm ⇔ n ≤ m and xi ≤ yi for all i ∈ [n].

Let us consider for example

X = {x(1) = (10, 2, 1, 0, 0),x(2) = (−11),x(3) = (−5,−6,−10)}

and

Y = {y(1) = (10, 2, 1, 0, 0),y(2) = (10,−100),y(3) = (−5,−6,−10)}.

It is clear to see that for each i = 1, 2, 3 we have x(i) E y(i). However, for the
corresponding centroids we have (−1.67,−1.67,−3) 6E (5,−34.67).

Proposition 1. The function F defined by Eq. (6) is:
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(i) idempotent, i.e. F(x,x, . . . ,x) = x ,
(ii) symmetric, i.e., F(x(1),x(2), . . . ,x(l)) = F(x(σ(1)),x(σ(2)), . . . ,x(σ(l))), where

σ is a permutation of set X ,
(iii) componentwise internal on common indices, i.e., µi ∈ [

∧l
j=1 x

(j)
i ,
∨l
j=1 x

(j)
i ],

i = 1, . . . ,minj=1,...,l |x(j)|,
(iv) global internal, i.e., µnµ ≥ u and µ1 ≤ v, where µ = F(X ) and u =

mini=1,...,l{x(i)ni }, v = maxi=1,...,l{x(i)1 }
(v) length internal, i.e., nµ ≥ nmin and nµ ≤ nmax, where µ = F(X ), nµ = |µ|

and nmin = mini=1,...,l{|x(i)|}, nmax = maxi=1,...,l{|x(i)|}.

Proof. (i) Trivial.
(ii) Trivial.
(iii) Is induced by the properties of averaging fusion functions.
(iv) Assume this does not hold, i.e., (∃i)µi > v for some i. This implies that

1
l|P{i}|

∑
j∈Pi x̃j > v. On the other hand, please note that v < 1

l|P{i}|∑
j∈Pi x̃j ≤ x

′, where x′ = maxj∈Pi{x
(1)
j , . . . , x

(l)
j }. Therefore,

v 6= maxx∈X ,i=1,...,nx{xi}, and the proof is complete.
(v) In Lemma 1 [2] it was shown that nµ ≤ nmax. Let us now consider nµ ≥

nmin. Let µ = F(X ) = argminF (µ) and |µ| = nµ < nmin. Then, F (µ) =∑l
i=1

(∑nµ
j=1(x

(i)
j − µj)

2 +
∑nxi
j=nµ+1 x

2
j

)
+
∑l
i=1 nxi − lnµ. Let us now

consider vector µ′ = (µ, (nmin − nµ) ∗ 0). Now, |µ′| = nmin and F (µ′) =∑l
i=1

(∑nµ
j=1(x

(i)
j − µ′j)

2 +
∑nxi
j=nµ+1 x

2
j

)
+
∑l
i=1 nxi − lnmin. Therefore,

F (µ)− F (µ′) = l(nmin − nµ) > 0 and µ 6= argminF (µ) = F(X ).

2.2 Genetic algorithm

Another approach to solve the optimization task defined by Eq. (2) is via genetic
algorithms [16,17,18], i.e., search heuristics that mimic the process of natural
selection. Basically, the genetic algorithm requires a population of candidate so-
lutions, called individuals, to an optimization problem and an objective function
associated with each individual that represents the quality of the result. During
the computations, population is evolved toward better solutions. In general a
genetic algorithm consists of operators that are used to produce a new popula-
tion of candidate solutions (so called offsprings), i.e., selection (operator that
chooses which solutions are used for crossover), crossover (the process of com-
bining selected individuals to obtain a new solution) and mutation (a random
perturbation of a solution candidate), see Algorithm 2. Investigation carried out
in this paper focuses on algorithms to solve clustering problems for which the
number of clusters K is known or set up a priori.

Representation of the individuals. When it comes to a clustering task, individ-
uals in the genetic algorithm can be expressed via binary, integer, and real rep-
resentation [17]. In our investigation we focus on the real encoding, i.e, clusters
centers. Classically, in n dimensional space, if individual i encodes K clusters
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Data: The initial population P .
evaluation(P );
repeat

P := crossover(selection(P ));
mutation(P ):
evaluation(P );

until termination condition met ;
Algorithm 2: A genetic algorithm.

then its length is Kn, where the first n positions represent the n coordinates
of the first cluster prototype, the next n positions represent the coordinates of
the second cluster prototype, and so on. However, in our setting the individu-
als are of possibly different lengths. Therefore, each individual is represented by
a set of K vectors encoding K clusters, i.e., the i-th individual is of the form
{µ(1)

i , . . . ,µ
(K)
i }, for i = 1, . . . , N , where N is the size of population. The initial

population is produced as a random sample of given data points.

Selection. Typically, selection is based on the value of the objective function of
the solutions. In the proposed algorithm the selection simply chooses M of all
the individuals that gives the smallest value of the objective function.

Crossover. In the proposed algorithm two individuals (parents) are selected form
the population. The offspring is created as a concatenation of the randomly
chosen sub-sequences of each one of them, see Algorithm 3.

Data: Population of clusters centers of size M .
Result: Population P ′ of size N .
Let P = {(µ(1)

1 , . . . ,µ
(K)
1 ), . . . , (µ

(1)
M , . . . ,µ

(K)
M )};

P ′ := {};
for i = 1, . . . , N do

j1 := U{1, . . . ,M}; (random observations)

j2 := U{1, . . . ,M};
for j = 1, . . . ,K do

k := (U{1, . . . ,K},U{1, . . . ,K});
n1 := U{1, . . . , |µk1

j1
|};

n2 := U{1, . . . , |µk2
j2
|};

n3 := |µk2
j2
|;

µ̃j
i := sort_decreasing((µk1

j1
[1 : n1],µ

k2
j1
[n2 : n3]));

(we have x[i : j] = (xi, xi+1, . . . , xj), i ≤ j)
end
P ′ := P ′ ∪ (µ̃

(1)
i , . . . , µ̃

(K)
i );

end
Algorithm 3: Crossover procedure for genetic approach for informetric data
sets.
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Mutation. In our setting the mutation stage consists of three, randomly chosen
actions: remove one element of an individual, add one element to an individ-
ual and perturb individual with noise generated from a Gaussian distribution,
repeated several times (see Algorithm 4).

Data: The population of clusters centers P of size N .
The number of mutations to make LM .
Result: Population P ′.
Let P = {(µ(1)

1 , . . . ,µ
(K)
1 ), . . . , (µ

(1)
N , . . . ,µ

(K)
N )};

for i = 1, . . . , LM do
u := U(0, 1);
j1 := U{1, . . . , N};
if u < 0.33 then

j2 := U{1 . . . ,K};
z := µ

(j2)
j1

;
µ

(j2)
j1

:= z[−U{1, . . . , |z|}];
else

if u < 0.67 then
j2 := U{1 . . . ,K};
z := µ

(j2)
j1

;
y := U(0,MAX);
µ

(j2)
j1

:= sort_decreasing((z, y));
else

j2 := U{1 . . . ,K};
z := µ

(j2)
j1

;
µ

(j2)
j1

:= sort_decreasing(z+N (|z|, 0, σ));
end

end
end

Algorithm 4: Mutation procedure for genetic approach for informetric data
sets.

Additionally, during the computations, if the convergence is slow, the algo-
rithm is automatically restarted.

Remark 4. Please note that a function R : S2 → S given by the procedure of
combining two parents into one offspring in the crossover operator (inner loop
in Algorithm 3) is also a fusion function. Moreover, it is easily seen that R is
not symmetric, componentwise internal on common indices and length internal.
It fulfills, however, global internality.

3 Empirical Analysis

In this section, a comparative analysis of the proposed approach and the projec-
tion to a fixed space of indexes is performed. We consider the following sources
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of data: Stack Exchange data base, dependency network of R packages, and
Elsevier’s Scopus citations base.

Stack Exchange data base. Stack Exchange is a network of question-answer sites
each devoted to a specific topic, e.g., mathematics, physics, philosophy, etc. In
each of such, sites users ask questions concerning a given topic and also give an-
swers to other users questions. Such post (answer, question) is evaluated by the
whole community by means of DownVotes (−1) and UpVotes (+1). Therefore,
each user can be described by the vectors of such evaluations (possibly negative).
Moreover, the length of such vectors may vary from user to user. In the investi-
gation carried out here we focused on the users of the Physics Stack Exchange
(physics data set). In the evaluation process we consider only answers to the
questions given by users. The data were collected on the September 15, 2015
and consist of 6470 vectors corresponding to users who answered at least one
question. Please note that in this particular data set, about 64% of all vectors
are of length 1, and among them about 33% are equal to 0.

R packages dependency network. In R each user may create a package and make
it publicly available. Each new software item is built by reusing the functional-
ity provided by packages that are already available. Such dependencies may be
viewed as citations and the total number of such citations is overall assessment of
the package quality (importance). Because of that, the system of R packages may
be perceived as a structure of interrelated items that depend on each other. The
collected data consists of information considered 4356 packages (see [19] for the
description of the data set). Please note that there are 2928 packages (i.e. 67.2%)
which are not cited at all. Moreover, we found 997 items (i.e. 22.43%) that do
not cite any other package. Please note that in this particular data set, about
41% of all vectors are of length 1, and among them about 66% are equal to 0.

Elsevier’s Scopus citations base. The scopus data set consists of 16282 citations
vectors gathered from Elsevier’s Scopus (see [20] for the description of the data
set). For the sake of the clarity of the results presented in this paper, a subset
of 3500 randomly chosen authors (scopus) has been selected. However, please
note that the structure of the data set remains the same. Table 1 presents the
sample statistics (minimum, maximum, quantiles and arithmetic mean) of basic
characteristics of vectors in each set.

Moreover, please note that about 78% of all vectors in Elsevier’s data base
are of length 1, and among them about 32% are equal to 0. For the random
sample scopus the proportions are similar (about 78% of length 1 and among
them about 31% equals to 0).

K-means-like algorithm vs projection approach. The aim of the analysis pre-
sented in this section is to determine the relationship between partitioning
schemes obtained with k-means algorithm on the projection original data into
space of fixed number of aggregation indexes and the clustering obtained with
modified K-means-like algorithm applied on the raw data points.
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Table 1. The comparision of the Elsevier’s Scopus data base and random sample
scopus.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Vetors’ lengths

scopus 1 1 1 1.696 1 95
Elsevier’s Scopus 1 1 1 1.667 1 129

Vectors’ maximal element
scopus 0 0 3 9.746 10 791

Elsevier’s Scopus 0 0 3 9.098 9 836
Vetors’ sum of elements

scopus 0 0 3 14.94 11 1610
Elsevier’s Scopus 0 0 3 13.53 11 2396

We perform computations with sequences of parameters p and q ranging from
1 to 10 and 0.5 to 2, respectively. For the projection methods we consider the
following sets of indexes:

(A) N (vectors’ length), Min (vectors’ minimal value), Q1 (first quartile of vec-
tors’ elements), NP2 (the number of vectors’ elements that are ≤ 0), and
NP (the number of vectors’ elements greater of 0)

(B) Max (vectors’ maximal value), Sum (sum of all vectors’ elements), Q2,
Q3 (second and third quartile of vectors’ elements), and arithmetic mean
(Mean)

(C) indexes form set (A), (B) and additionally h-index, g-index and w-index
when possible, i.e., for data sets with only non-negative values (rpkg, sco-
pus).

It is clear to see that the set (A) focuses on vectors’ lengths, while set (B) on
the values of their elements.

Note, however, that such a comparison cannot be performed directly. Not
only each algorithm optimizes a differently defined objective functions, but also
is situated in different spaces. Therefore, to assess the differences between projec-
tion and K-means-like procedure we choose to use Rand Index, i.e., A/(A+D),
where A denotes the number of all pairs of data points assigned by both par-
titions into the same cluster or into different clusters (both partitionings agree
for all pairs A) and D denotes the number of all pairs assigned differently by
both partitions (the partitions disagree for all pairs D), compare [21]. Moreover,
please note that the Rand Index has zero expected value in the case of a random
partition, and it is bounded above by 1 in the case of perfect agreement between
two partitions.

Table 2 present the maximal Rand Index value for each data set between
all considered combinations of parameters. The smallest agreement between the
projection and K-means-like approaches usually obtain for scenario (A) then (B)
and (C), especially while partitioning into fewer groups. This seems reasonable
since this set of indexes does not include specific measure of quality. However,
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the obtain results indicate that with appropriate choice of parameters p and q,
the K-means-like algorithm produce clustering quite similar (about 80%) to the
one obtained with the projection approach (especially for (B) and (C) set of
indexes).

Table 2. The maximal value of the Rand Index between clustering obtained via K-
means-like algorithm with dD;p,q dissimilarity measure with various parameters p and
q and via the k-means algorithm on projection to a space of indexes.

physics rpkg scopus
K (A) (B) (C) (A) (B) (C) (A) (B) (C)
3 0.65 0.71 0.44 0.76 0.75 0.80 0.54 0.91 0.84
6 0.72 0.82 0.83 0.74 0.94 0.95 0.68 0.74 0.78
9 0.24 0.86 0.92 0.78 0.92 0.93 0.70 0.94 0.85

K-means-like vs genetic approach. Let us now consider the comparison between
the K-means-like procedure and the proposed genetic algorithm. Firstly, both
procedures were applied on random samples of each considered data sets. The
Table 3 presents the percentage of all cases in which genetic algorithm performed
better in case of partitioning into 3, 6, and 9 clusters. In most cases, between 84%
for physics data set and 60% for scopus data set, the K-means-like algorithm
performed better in case of detecting three clusters. However, for the six and
nine clusters, genetic approach gives better results (between 68% for physics
and 100% for rpkg).

Table 3. The percentage of cases when GA performed better than K-means-like proce-
dure, i.e., the returned value of the objective function was smaller. The mean difference
between GA and KMA is also presented in brackets, where the first value concerns cases
when GA performed better and the second one when KMA performed better.

Set \K 3 6 9
scopus 0.40 (3227.9 | 599.3) 0.96 (5673.1 | 946.3) 0.84 (6116.2 | 526.4)
rpkg 0.36 (8829.2 | 36154.9) 0.80 (93120.7 | 5158.3) 1.00 (99950.7 | ∅)

physics 0.16 (51851 | 1410.6) 0.68 (2837.7 | 662.3) 0.84 (2829.6 | 790.2)

Let us now focus on exemplary results obtained via K-means-like and genetic
approaches. Table 4 presents the value of the objective function for clustering
obtain via K-mean-like (denoted as KMA) procedure and genetic approach (de-
noted as GA) for physics, scopus and rpkg data sets, and the Rand Index cal-
culated between those two partitionings. In each case the GA performed better
with agreement about 60% (with exception for rpkg data set with about 92% of
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agreement). Table 5 presents cluster sizes for both algorithms. Note that even
though results are similar (one large cluster and few smaller), it seems that the
genetic approach tends to create smaller groups, then KMA, e.g., cluster of one
element in physics data set. This is also reflected in Table 6 with the total inner
dissimilarity in each cluster.

Table 4. Values of the objective function for clustering obtained via K-means-like
(denoted as KMA) procedure and genetic approach (denoted as GA), and the Rand
Index (denoted as RI).

physics scopus rpkg
p, q 7, 1 2, 1 1, 1
KMA 610702.5 567252.7 546948.6
GA 585719.2 503527.2 646174.7
RI 0.594171 0.6192729 0.9212828

Table 5. Sizes of clusters obtained via KMA and GA.

Cluster no. 1 2 3 4 5 6
physics

KMA 5081 665 538 7 159 20
GA 5757 1 474 164 67 7

scopus
KMA 2581 678 188 37 8 8
GA 2932 487 4 67 4 6

rpkg
KMA 1240 94 54 27 5 8
GA 1259 98 58 5 3 5

Let us consider the Silhouette information proposed in [22]. The Silhouette
information for each observation x(i) is defined as:

s(i) =
(b(i)− a(i))

max(a(i), b(i))
,

where a(i) = 1
|Ck|

∑
y∈Ck dD(y,x

(i)) if x(i) ∈ Ck, and b(i) := minj=1,...,K;j 6=k d(i, Cj),
where d(i, Cj) = 1

|Cj |
∑

y∈Cj dD(y,x
(i)) for all Cj such that j 6= k. Please note

that a(i) is the average dissimilarity between x(i) and all other points of the
cluster to which i belongs (if i is the only observation in its cluster, s(i) = 0
without further calculations) and d(i, cj) is an average dissimilarity of x(i) to
all observations of Cj that x(i) does not belong to. Moreover, b(i) can be seen
as the dissimilarity between i and its “neighbor” cluster, i.e., the nearest one to
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which it does not belong. Observations with a large s(i) (almost 1) are very well
clustered, a small s(i) (around 0) means that the observation lies between two
clusters, and observations with a negative s(i) are probably placed in the wrong
cluster.

Fig. 1 depicts the percentage of observations with s(i) within [−1,−0.6),
[−0.6,−0.4), [−0.4,−0.2), [−0.2, 0), [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1].
Please note that in cases of the physics data sets the results for the genetic
algorithm are better than for K-means-like algorithm, while for the scopus and
rpkg are about the same.

[−1,−0.6) [−0.4,−0.2) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]

0.0

0.2

0.4

0.6

0.8

1.0

(a) physics

[−1,−0.6) [−0.4,−0.2) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]

0.0

0.2

0.4

0.6

0.8

1.0

(b) scopus

[−1,−0.6) [−0.4,−0.2) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]
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0.6

0.8

1.0

(c) rpkg

Fig. 1. The bar plots of the Silhouette width for KMA-partitioning and GA-partitioning,
depicted in light and dark gray respectively.
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Table 6. Total inner clusters dissimilarity for clustering obtain via the K-means-like
(denoted as KMA) procedure and the genetic approach (denoted as GA).

Cluster no. 1 2 3 4 5 6
physics

KMA 77455.62 1415.78 133645.88 57756.86 165782.01 174646.30
GA 91168.00 4764.41 123587.82 91364.88 198037.46 76796.58

scopus
KMA 20533.37 44994.50 107017.54 74370.41 262758.88 57578.00
GA 56029.00 135444.09 71226.79 151434.95 45038.46 44353.86

rpkg
KMA 28827.21 34890.90 84307.37 69966.89 140740.00 287442.38
GA 41313.94 74210.71 170839.21 81404.04 24833.33 154347.40

Fig. 2 depicts exemplary box-and-whisker plots of vectors’ basic sample char-
acteristics in each cluster obtained with, both, KMA and GA algorithms for
physics data set. Please note the logarithmic scale on Y axis. On the other
hand, Figs. 3 and 4, present step plots of vectors in each cluster physics for
KMA and GA partitioning, respectively, (depicted in gray color) with their cen-
troids and centers (depicted in black). The centers obtained with the GA are
more differential according to, both, lengths (1, 8, 18, 71, 106, 1222) and total
sum of elements (1, 324.14, 31.93, 192.3, 449.27, 4236.88), then K-means-like
derived centroids (1, 1, 18, 14, 79, 489) and (1.92, -1.98, 47.77, 198.86, 285.02,
1997.75), respectively.
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(b) Vectors’ lengths (GA-partitioning).
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(d) The total sum of vectors’ elements
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Fig. 2. The box-and-whisker plots of vectors’ basic sample characteristics – physics
data set.
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Fig. 3. Step plots of vectors in each cluster physics for KMA partitioning (depicted in
grey color) and their centroids (depicted in black).
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Fig. 4. Step plots of vectors in each cluster physics for GA partitioning (depicted in
grey color) and their centroids (depicted in black).
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4 Conclusions

This contribution presents the recent developments on clustering algorithms de-
sign to deal with so numeric strings. The genetic approach for such setting in
proposed and compare to K-means-like algorithm. Both, the data mining and
aggregation perspective is taken into account while reviewing obtained results.
Moreover, reduction of the data dimension by considering a fixed number of at-
tributes or indicators in order to apply clustering techniques on vectors of non-
conforming lengths is also investigated. It turns out that agreement between this
approach and algorithms applied directly on data points depends on parameters
of the dissimilarity function. Moreover, with appropriate choice of parameters
K-means-like procedure can mimic the results of projection approach. Therefore,
some interesting directions worth of deeper investigation arise. First of all, the
other penalty terms in dissimilarity measures should be considered and tested
so the procedure may be better calibrated to suit the nature of an input data
set we analyze. Also, calibration of the parameters of a dissimilarity measure,
so that produced values are close as much as possible to the one obtain with an
arbitrary set of indexes may be considered.
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Abstract. In this work we focus on sensitivity analysis of biochemi-
cal models. The research includes both formal modelling of signalling
and metabolic pathways as well as developing theoretical methods for
model assessment. The aim of this study is to better understand a natu-
ral phenomenon in quantitative an qualitative manner by mathematical
modelling. To validate any model it is crucial to determine which factors
are most influential for a modelled system behaviour. Part of my study is
to develop a new sensitivity analysis method based on mutual informa-
tion that provides an efficient identification of parameters and group of
parameters that are crucial for a modelled system, providing additionally
information about interactions between parameters in accordance to the
model output.

In the first section of this paper we briefly present the motivation behind
formal modelling and its necessity in any experimental design.

The second section contains review of classical sensitivity analysis meth-
ods based on literature and in the second part of this section we recall two
recently invented SA methods: Stochastic Noise Decomposition (SND)
and Sensitivity Analysis (SA) based on Mutual Information (MI). We
tested and implemented the SND method in direct cooperation with au-
thors of this method (cf. Komorowski et al., 2013) the results of our
work were presented in application note - StochDecomp Matlab package
(Jetka et al., 2014). The second method SA based on MI was deeply
studied and developed by us with the application to continuous random
variables. We introduce a novel correction to the classical k-nn entropy
estimator to reduce the bias of estimation in finite sample size for highly
dimensional data.

The third section is devoted to a brief summary of biochemical models
of our interest. Some models were adopted from literature and used as
a test example for application of theoretical SA methods e.g. p53-Mdm2
negative feedback loop model and other models were fully developed and
implemented by us e.g. sphingolipid metabolism model (Wronowska et
al., 2015). To all presented in this section models we applied several SA
methods.
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1 Motivation

Mathematical modelling of biological phenomena described e.g. by dynamical
systems, complements experimental technologies used to identify and compre-
hend a role of system components. The process in which a model is formulated
and refined helps to articulate hypotheses and thereby supports the design of
experiments to validate these hypotheses and the model itself. Once the model
is validated it is used to speculate about mechanisms underlying cell functions.

EXPERIMENTAL 
MODELING 
LIFE CYCLE   

 

Fig. 1. Scheme of experimental modelling life cycle

The standard approach to understand dynamics of biological system is to
observe the behaviour of as many as possible system components. An important
element of the model design is analysis and identification of most informative
and responsive to perturbations model elements (sensitivity analysis) to reveal
the spectrum of available dynamical regimes (validated by model checking). Ver-
ification of the model design together with parameters estimates is carried out
experimentally by comparing model predictions with experimental results for
stimulation profiles. Any necessary corrections in model structure and param-
eter estimates must be made. The experimental modelling life cycle scheme is
depicted in Fig. 1.
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The construction and analysis of mechanistic models of biological systems
is a part of recently established, highly interdisciplinary fields of systems and
computational biology. Computational modelling of signal transduction inte-
grates available knowledge about pathway regulation, and the general chemi-
cal and physical principles with experimental data from different biotechnology
platforms. Such approach constitutes a powerful solution for formalizing and
extending traditional molecular and cellular biology.

2 Sensitivity Analysis

Mathematical modelling of biological phenomena can be carried out in a de-
terministic, stochastic or hybrid manner. The first approach is based on the
Ordinary Differential Equations (ODEs), while the second one is based on the
stochastic processes or stochastic differential equations (SDEs) theory. Both
types of models are usually based on some simplifying assumptions i.e. that
the temperature of a chemical environment is constant, and that the diffusion
process occurs immediately, which ensures an even distribution of a substance
over a limited volume. Deterministic models describe changes in mean concen-
trations of reagents (species) over time, and they do not include the effect of
fluctuations which occur in reality. This means that for given initial conditions, a
deterministic model will always provide the same results. While stochastic mod-
els describe the evolution of the probability distribution of all possible system
states with respect to time. Both types of modelling requires proper verification
and analysis.

A biochemical model described by ODEs can be expressed in the matrix
form:

dS(t)

dt
= Mv(S(t)),

where the system state is represented by the time dependent state vector S(t)
of species concentration, M denotes the stoichiometry matrix and v(S(t)) de-
notes a vector of reaction fluxes (in simplest standard modelling according to
Mass Action Law (MAL) or Michaelis Menten (MM) kinetics possibly including
inhibition rates).

The most popular approach to describe discrete stochastic model of biochem-
ical pathway is Chemical Master Equation (Chapman-Kolmogorov equation of
Markov chain modelling the evolution of the system):

pP (x, t)

dt
=
∑
j

aj(x−mj)P (x−mj , t)−
∑
j

aj(x)P (x, t),

where the system state is denoted by the vector X(t) ∈ NN of numbers of
molecules each row for one of N reacting species, mj denotes the j-th col-
umn of stoichiometry matrix M = (m1, . . . ,mR) and P (x, t) denotes the time-
and state-dependent distribution of system being in state X(t) = x and fi-
nally aj(X(t)) denotes the propensity function associated with the j-th reaction
(Charzyńska et al., 2012).
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2.1 Classification of SA Methods

Local Methods 
• Derivation wrt 

parameters 
• Morris Method  
• Screening Methods 

 

Global Methods 
• Sobol Method 
• Fourier Amplitude 

Sensitivity Test 
(FAST) 

• MPSA 

New Global Methods 
• Stochastic Variance Decomposition (StochDecomp) 
• Mutual Information Sensitivity Analysis 

Fig. 2. Local and Global Sensitivity Analysis Methods

Sensitivity analysis is used to determine dependencies between input pa-
rameters and the results of the model. One can chose as input parameters for
example initial concentrations of modelled species or reaction rates. Result of
the biochemical model is most commonly defined as the density of species as a
function of time. SA is very useful in mathematical modelling, as it describes
dependencies between different elements of the model, it is also applicable to
empirical experiments planning and enables verification of theoretical model re-
sults together with numerical and empirical results. SA also enables recognition
of model’s conceptual and implementational omissions.

Sensitivity analysis investigates the relations between uncertain parameters
of a model, and a property of the observable outcome, which represents some
prototypic features of the modelled system (Saltelli et al., 2008) . SA has been
used in various parametrization tasks for models of biological systems, such as
finding essential and insignificant parameters for the prioritization (Yue et al.,
2008) , identifying parameters interactions or or parameters clustering (Mahdavi
et al., 2007).
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Classically, sensitivity of the model to the parameters is determined by the
partial derivation of the outcome variables with respect to parameters. SA meth-
ods based on such quantities are called local (LSA), as the derivative is taken
at a fixed point in the state space. Sensitivity indices are defined as partial
derivatives of system states with respect to parameters integrated by time:

sn,i =

∫ T

0

∣∣∣∣∂Sn(t)

∂θi

∣∣∣∣
θ=θ0

dt

where Sn are different species concentrations, θ is the vector of parameters and
θ0 is some fixed point in parameters space. One of disadvantage of this method
is the high dependence of sensitivity indices to arbitrary choice of time horizon
T that can influence the SA results.

Moreover, these methods belong to the class of one-factor-at-time (OAT)
methods, because the net effect of a parameter to the model outcome is taken
while assuming that all other factors are fixed. However, most of the biochemical
reactions networks yield models of a non-linear nature and for these models,
OAT methods can be of limited use if not outright misleading (Saltelli et al.,
2005) . Possible solution is to ingestive of the influence of simultaneous changes
in parameters values by assessing higher order partial derivatives (Mahdavi et
al., 2007), where the order depends on the non-linearity level of the model.
Nevertheless, it is still a local method, highly dependent on the given values of
parameters.

On the other hand, there are so-called global sensitivity analysis (GSA) meth-
ods, that simultaneously examine a whole range of input parameters values.
Exemplary implementations of the GSA indices are the model-free, global sensi-
tivity measures such as the variance decomposition (Saltelli et al., 2008), or the
parameters space mapping method of Monte Carlo filtering (MCF) such as the
multi-parameter sensitivity analysis (MPSA) (Hornberger and Spear, 1981).

In between, there are screening techniques which approximate the GSA in-
dices. Screening techniques, such as the weighted average of local sensitivities
(Bentele et al., 2004) or the elementary effects of Morris (1991), are global in
the sense that they scan a whole range of parameters values, but they use local
OAT methods for each analysed set of parameter values.

For a sake of clarity, if not explicitly stated otherwise, we will use a term local
method meaning the local and OAT method, as well as a term global method
meaning GSA method (Global and simultaneous).

Finally, there are SA methods tailored specifically to the stochastic models
(Gunawan et al., 2005). These methods recognize that the response is in form
of distribution rather than a single value corresponding, for instance, to the
mean value. Consequently, for systems where a parameter disruption does not
significantly influence the mean but significantly influences the distribution itself,
the model-free SA indices can incorrectly indicate a lack of sensitivity of the
model (cf. Degasperi and Gilmore, 2008).

To extend the range of available global sensitivity analysis methods we re-
call here new approaches: method based on information theoretic measure and
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stochastic noise decomposition. Both methods can be applied to dynamical sys-
tems whether formulated in deterministic or stochastic manner. Each method
has its specificity: noise decomposition method allows to track how the stochastic
noise distribute within the biochemical system in division into single reactions
noise compartments, whereas mutual information method based on entropy es-
timation provides sensitivity indices and interaction indices for any group of
parameters that represent model input.

2.2 Stochastic Noise Decomposition Method

The question which molecular species or parts of a network contribute most to
the variability of a system or are responsible for most of the information loss has
attracted much attention in recent years. Stochasticity is an indispensable aspect
of biochemical processes not only but especially at the cellular level. Studies on
how the noise enters and propagates in biochemical systems provides a non-
trivial insights into the origins of noise in a model. Numerous studies focus on
analysis of noise in signalling networks in detail and decomposition of the noise
into contributions attributable to fluctuations in species concentration.

Recently developed StochDecomp (Jetka et al., 2014) is a flexible and widely
applicable noise decomposition tool that allows to calculate contributions of
individual reactions to the total variability of a system output. The method
allows to quantify how the noise enters and propagates in biochemical systems.
It is based on recently developed method (Komorowski et al., 2013) that allows
to analyse how the structure of biochemical networks gives rise to noise in its
outputs. In principle, this allows to efficiently calculate the contribution each
reaction makes to the variability in all concentrations for any network, which can
be modelled within the Linear Noise Approximation (LNA) framework. LNA is
one of the possible simplification of the Chemical Master Equation , with the
system dynamic modelled as Poisson process:

X(t) = X(0) +

R∑
j=1

mjNj

 t∫
0

fj(X(τ), τ)dτ


where Nj(X(t), t) denotes Poisson process dependent on time and a system state
X(t), corresponding to occurrence of j-th reaction. The probability that j-th
reaction occur during the time interval [t; t + dt) equals fj(x, t)dt, where the
fj(x, t) is called the transition rate.

It is more efficient to transit from discrete to continuous process, as accu-
rate discrete models describe the exact evolution of probability distribution of
the system state counted in molecules number. Discrete biochemical models are
computationally not efficient, as simulations require significant resources. Con-
sequently by use of deterministic approximation:

Φ(t) = Φ(0) +

R∑
j=1

mj

t∫
0

fj(Φ(s), s)ds
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where Φ(t) is the mean system state being the solution of the ODEs, one can de-
scribe the system state evolution by dividing it into deterministic and stochastic
part:

x(t) = ξ(t) + Φ(t)

where Φ(t) is the deterministic part and ξ(t) is the Weiner process describing
stochastic noise of a system state (Komorowski et al. 2009). The next step of
stochastic noise decomposition is to divided noise linearly into noise steaming
from separate reactions. The total variance:

Σ(t) = 〈(x(t)− 〈x(t)〉)(x(t)− 〈x(t)〉)T 〉

is described by the differential equation

dΣ

dt
= A(t)Σ +ΣA(t)T +D(t), (1)

where

{A(Φ, t)}ik =

r∑
j=1

mij
∂fj(Φ, t)

∂Φk

and D(t) denotes diffusion matrix. The fact, that the variance can be represented
as the sum of individual contributions,

Σ(t) = Σ(1)(t) + ... +Σ(r)(t). (2)

results directly from the decomposition of the diffusion matrixD(t) =
∑r
j=1D

(j)(t)
and the linearity of the equation for Σ(t).

The Stochastic Noise Decomposition method is based on the LNA, which
is assumed to provide a reasonable representation of analysed systems even in
case of priori deterministic formulation. Origins of variability can be therefore
assigned to individual reactions and arbitrarily defined network components.

Contrary to most available methods Stochastic Noise Decomposition is tai-
lored for biochemical dynamical systems and provides an insight in time evolu-
tion of noise decomposition into reaction network. The tool is computationally
effective even for vast biochemical models (compare Fig. 11) and can successfully
provide a required information, see Fig. 3.

2.3 Sensitivity Analysis Based on Mutual Information

Another recently developed method for sensitivity analysis of multi-variables
system has been oryginaly proposed by Lüdtke (Lüdtke et al. 2008). One of the
biggest advantage of this method is its applicability to investigation of a model
sensitivity to groups of parameters, and not only to single parameters, so it is
not OAT method. Moreover this method provides an insight into interactions
between parameters.

However, the approach proposed by Lüdtke is based on discrete variables and
discrete entropy estimator. Consequently it requires computationally inefficient



34 Agata Charzyńska

Fig. 3. Stochastic Noise Decomposition into single reactions vs. time for the Ceramide
Metabolism Model - Scheme in Fig. 11

variable discretization procedure, that is highly biased and inefficient in high-
dimensional space (i.e. in many parameters case). Having this concern in mind
and due to fact that biochemical models deal with continuous measurements we
propose to amend the method to continuous variables case.

The fundamental concept for sensitivity indices is mutual information Eq. (3)
between random variables defined by parameters and random variables being
model output. Let us denote by variable X ∼ g(x) model parameters and by
variable Y ∼ f(y) model output, then the mutual information between this
continuous random variables is defined by

I(X;Y ) :=

∫
X

∫
Y

log
h(x, y)

g(x)f(y)
h(x, y)dydx (3)

= E
[
log

h(x, y)

g(x)f(y)

]
= H(Y ) +H(X)−H(X,Y ),

where g(x) and f(y) denotes probabilities densities functions and h(x, y) is the
joint probability density function of joint random variable (X,Y ).

Measurements of MI is based on entropy estimation. In our approach to SA
based on MI we use differential entropy Eq. (4), so there is no need of variables
discretization.

H(X) :=

∫
X

− log g(x)dx = E [− log g(x)] (4)

As a starting point for differential entropy estimation we used the k-th nearest
neighbour entropy estimator. In order to achieve more reliable results we intro-
duced more efficient k-nn differential entropy estimator for multivariate random
variables. We have noticed the biased behaviour of the k-nn entropy estimator
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Eq. in higher dimension and propose bias correction, which yields more accu-
rate k-nn entropy estimates especially in higher dimensions. Our improved k-nn
entropy estimator explore the idea of correcting the density function evaluation
near to the boundary of random variable support.

Definition 1 Assume that Xi are the parameters of the model and Y is the
model output, then sensitivity indices are defined as:

I(Xi;Y ) = H(Y ) +H(Xi)−H(Xi, Y ) = H(Y )−H(Y |Xi).

Analogously, sensitivity indices for pairs of parameters are defined as:

I(Xi, Xj ;Y ) = H(Y ) +H(Xi, Xj)−H(Y,Xi, Xj) = H(Y )−H(Y |Xi, Xj).

The sensitivity indices reflect the impact of parameters on the model output,
in other words this definition indicates correlations between parameters and the
output. Definition 1 can be extended for any subset of parameters.

The group sensitivity index for a pair of parameters may have high value
indicating the significant influence of these parameters to the model output,
while two sensitivity indices for these two single parameters may in the same
time have low value. We interpret such case as opposite -negative interaction
between this pair of parameters, compare Fig. 4.

Definition 2 Let Xi denote parameters of a model and Y denote model output,
then interactions indices within pair of parameters are defined by:

I(Xi;Xj ;Y ) = EXi,Xj ,Y

[
− log

p(xi)p(xj)p(y)p(xi, xj , y)

p(xi, xj)p(xi, y)p(xj , y)

]
= H(Xi) +H(Xj) +H(Y )−H(Xi, Y )−H(Xj , Y )−H(Xi, Xj) +H(Xi, Xj , Y )

= I(Xi;Y ) + I(Xj ;Y )− I(Xi, Xj ;Y ).

3 Biochemical Models

Within our research we concentrate on investigation and development of formal
sensitivity analysis methods and also we implement and test the methods on
various dynamical biochemical models. The complexity of a model depends on
the number of variables and parameters and the kinetics defined in ODEs or
SDEs, compare Fig. 5. In order to better understand and capture model features
we test different standard and novel approaches.

3.1 Ligand-induced receptor model

In paper (Charzyńska et al., 2012) we focus on recently available methods of sen-
sitivity analysis for dynamic biochemical models, such as local sensitivity analy-
sis based on derivatives with regards to single parameters, and global sensitivity
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Fig. 4. Sensitivity analysis based on MI for the p53-Mdm2 negative feedback loop
model - scheme of the model in Fig. 8. (Submitted to Entropy)

Receptor Activation 

• EGFR  TfR      LDLR 
• 3 Variables 
• 6 Parameters  
• Stochastic approach 

Heat Shock Response 

• 9 Variables   
• 25 Parameters  
• ODEs model 
• Stochastic  approach 

 

Negative feedback  
p53-Mdm2 

• 3 Variables   
• 7 Parameters  
• ODEs model Sphingolipd metabolism  

• 37 Variables   
• 137 Parameters  
• ODEs model 
• MAL and MM kinetics 

 

JAK-STAT feedback 
mechanism 

• 12 Variables   
• 23 Parameters  
• ODEs model 

 

Fig. 5. Examined biochemical models
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analysis methods i.e. variance decomposition, Fourier Amplitude Sensitivity Test
(FAST), screening methods or stochastic methods. As an illustrative example of
the presented ideas we consider the mathematical model of ligand-induced re-
ceptor system (Shankaran et al. 2007), see Fig. 6.

We transformed the classical deterministic version into a stochastic model.
For both approaches, appropriate SA were applied. The model reflects a sys-
tem of cell surface receptors in a single cell and describes the time evolution
of three different species: ligands in the inter-cellular space, free receptors on a
cell membrane and ligand-receptor complexes, see Fig. 6. The set of the model
parameters contain also the volume of the inter-cellular space that falls for a
single cell V and the level of receptors concentration in the steady state RT . We
investigate four types of receptors:

– epidermal growth factor receptor, (EGFR), which stimulates cell division
and plays an important role in the process of tumour formation,

– transferrin receptor (TfR), responsible for the transport of iron into cells,
– low-density lipoprotein receptor (LDLR), transporting cholesterol into cells,
– vitellogenin receptor (VtgR), which mediates the uptake of vitellogenin (Vtg)

in oocyte development.

The results for sensitivity analysis based on Morris method were presented in
Fig. 7. In three of four analysed receptors types the crucial parameters were
koff and kon corresponding respectively to rate of complexes disintegration and
complexes binding, as well RT corresponding to concentration of receptor in
stationary state.

Fig. 6. Ligand-induced Receptor Activation Model

3.2 Negative feedback model of p53-Mdm2

To validate new approach of the global sensitivity analysis based on mutual
information measure we tested the method on a well known and widely studied
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Fig. 7. SA based on Morris method for Ligand-induced Receptor Activation Model
(Figure previously published in Biotechnologia by Charzyńska at al., 2012)
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example of negative feedback loop of p53 protein and Mdm2 ligase (Zatorsky et
al. 2006) for the model scheme see Fig. 8.

Tumour suppressor p53 protein also known as TP53 transcription protein 53
is a transcription factor determining the fate of a cell in case of DNA damage;
p53 indirectly, via activation of transcription of the p21 gene encoding, can block
cell cycle to repair DNA or activate a process of programmed cell death called
apoptosis. The main regulator of the concentration of p53 protein is ligase Mdm2
/ Hdm2 (double minute 2 mouse / human double minute 2), which through
ubiquitination leads to degradation of p53 in the proteasome. In more than
half of the cases of human cancers p53 is inactivated or absent, which allows the
mutated tumor cells to replicate and determines their immortality. Consequently,
this protein is under investigation due to its property to lead to self-destruction
of cancer cells, which could be successfully used as therapy in many types of
cancer.

By use of SA method based on MI we were able to capture the negative
interactions between parameters βx and αxy corresponding respectively to p53
inflow and Mdm2 negative loop, for the results of SA see Fig. 4.

Fig. 8. Negative Feedback p53-Mdm2 Model

3.3 Heat shock response model

One of the most important questions in cell biology is how cells cope with rapid
changes in their environment. The range of molecular responses includes a dra-
matic change in gene expression pattern and higher synthesis of so-called heat
shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival un-
der stress conditions (Morimoto 1993). To test hypothesis about heat shock
treatment we implemented and verify a mathematical model of heat shock pro-
tein synthesis induced by an external temperature stimulus (see Fig. 9), both
in deterministic and stochastic meaner. The deterministic model consists of a
system of nine non-linear ordinary differential equations describing the tempo-
ral evolution of the key variables involved in the regulation of HSP synthesis.



40 Agata Charzyńska

Computational simulations of the model were carried out for different external
temperature stimuli. Stochastic version of the model was implemented by use of
Chemical Master Equation. To validate the stochastic model output we used the
indices of variance to mean ratio for all modelled species. The greatest variance
to mean ratio both in homoeostasis and in heat shock case was scored by HSP
indicating highest sensitivity to stimuli of rapid substrate concentration raise.

Fig. 9. Heat Shock Response Model

3.4 JAK-STAT feedback model

The paper (Gambin et al., 2013) is a review of computational models of JAK1/2-
STAT1 signalling pathway. Despite conceptually simple mechanism of JAK-
STAT signalling pathway it has highly complex behaviour. This model describes
a control mechanism and factors influencing kinetics of the JAK-STAT pathway
with increased IFN-γ activity. The model is relatively complex as it captures
all essential elements in the JAK1/2-STAT1 signaling. Scheme of the model is
depicted in Fig. 10. The model can be informally divided into three modules:
receptor module, transcription factor module (the STAT life-cycle) and post-
translational feedback module.
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Computational modelling is a tool to investigate complex molecular signalling
pathways and formalize the description of the dynamics of the system. Computa-
tional models integrate experimental data with formal description of a modelled
system and consequently they allow to test new hypotheses about interactions
between modelled species. In paper (Gambin et al., 2013) we compared three
different approaches to the modelling of JAK1/2-STAT1 phenomenon. The sen-
sitivity analysis was useful not only to find the crucial parameters of any analysed
JAK-STAT models, but we used it also as a tool to compare different modelling
approaches.

steaming

Fig. 10. JAK-STAT Feedback Model

3.5 Sphingolipid metabolism model

In paper (Wronowska et al., 2015) we propose the first comprehensive computa-
tional model of sphingolipid metabolism in human tissue. Contrary to the pre-
vious attempts, we use a model that reflects cell compartmentalization thereby
highlighting the differences among individual organelles, see Fig. 11.

It has been proven that a significant role in the cell apoptosis pathway can
be played the ceramides - bioactive lipids, members of sfingolipid family. The
exact role of ceramides in signals transduction within nerve cells is still not fully
explained. Our motivation was to formally describe an empirically observed cor-
relation between ceramides concentration and cell viability response in human
neuroblastoma SH-SY-5Y. Ceramides in low concentrations increase cell viabil-
ity and may stimulate proliferation but in high concentrations ceramides induce
cell apoptosis. One of the hypothesis which may explain the pro-survival role
of ceramides in low concentrations is connection with sphingosine 1-phosphate
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Fig. 11. Sphingolipid Metabolism Model (Figure previously published in BMC Systems
Biology by Wronowska et al., 2015)

(S1P) synthesis involving sphingosine ceramide kinase activity. We aim to ex-
amine molecular mechanism of cell death evoked by ceramides within nerve cells
for both pathological states: cancer and neurodegeneration.

The model that we had build was validated using recently proposed meth-
ods of model analysis, allowing to detect the most sensitive and experimentally
non-identifiable parameters and determine the main sources of model variance.
Moreover, we demonstrate the usefulness of our model in the study of molecular
processes underlying Alzheimer’s disease, which are associated with sphingolipid
metabolism. This model allows to study sphingolipid metabolism disorders that
have been observed in various pathological conditions such as cancer and neu-
rodegeneration.

We performed local sensitivity analysis for this ODE model, but unfortu-
nately due to the model complexity the method was of limited use and must
have been complemented by the other SA method. The reason for limited ap-
plicability of LSA was due to its sensitiveness to the arbitrary choice of time
horizon. In case of sphingolipid model we found useful the stochastic noise de-
composition method based on LNA described in Section 2.2, for the results see
Fig. 3. The StochDecomp method allowed to detect parameters of highest vari-
ance components and it complemented the LSA method.

4 Summary

There are plenty recently available SA methods that were developed over decades.
We briefly recalled most popular SA methods in Section 2.1. Nevertheless each
method has some limitations in its applicability to model assessment. Our in-
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terest in development of new SA methods resulted from the need for efficient
analytical tools to assess computational models that deeply explore natural com-
plex phenomena. Section 3 contain description of some larger models examples
of transcriptional signalling and metabolic pathways that were under our inves-
tigation. For this models classical methods such as local SA was of limited use
duet to its applicability only to one at the time factor. Consequently it was not
enough to perform simple LSA to understand all model dependencies. In case of
larger networks (cf. model of sphingolipids metabolism Fig. 11) to understand
the complex relations within modelled species and parameters we prefer to in-
vestigate all parameters at once, as they may interact one with another and they
can have common impact to the model. In case of sphingolipid metabolism model
we found useful to compare the results of LSA with the StochDecop output that
let us identify the species with the greatest variance component resulting from
different reactions.

We also focused on development of a new method based on MI in lieu of
its discrete equivalent. This method seems to be promising as it can be applied
to any subset of parameters and can provide the information about interactions
within parameters groups with respect to the model output. We used this method
to compare with the LSA results of the p53-Mdm2 negative feedback loop model.
Contrary to LSA that can only provide the sensitivities of a single species to a
single parameter separately, SA based on MI provide us with the information of
sensitivity of global output to any subset o parameters and moreover with the
information of parameters interactions.

To conclude there are many SA methods with different applications. LSA is
most popular for biochemical dynamical models but it is a OAT method. The
alternative GSA methods are usually computationally inefficient especially for
stochastic version of biochemical models. The StochDecomp tool is a solution
that by LNA can provide the variance decomposition steaming from separate
reactions and can be easily applied to any biochemical model. The SA method
based on MI can by applied to samples of data from continuous random vari-
ables and can provide the sensitivity indexing for any subset of parameters,
consequently we found it useful for biochemical models.
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Abstract. Sudden releases of harmful material into a densely-populated
area pose a significant risk to human health. The apparent problem of
determining the source of an emission in urban and industrialized areas
from the limited information provided by a set of released substance con-
centration measurements is an ill-posed inverse problem. When the only
information available is a set of measurements of the concentration of
released substances in urban and industrial areas it is difficult to deter-
mine the source of emission. However, the problem can be solved when
there is additional information available together with the appropriate
tools. A convenient choice is the Bayesian probability framework, which
provides a connection between model, observational and additional in-
formation about the source. The Bayesian approach was applied in this
study to find the posterior probability density function of the contamina-
tion source parameters (location and strength) given a set of concentra-
tion measurements. The posterior distribution of the source parameters
was sampled using an Approximate Bayesian Computation (ABC) algo-
rithm. The stochastic source determination method was validated against
the real data set acquired in a highly disturbed flow field in an urban
environment. The datasets used to validate the proposed methodology
include the dispersion of contaminant plumes in a full-scale field exper-
iment performed within the project ”Dispersion of Air Pollutants and
their Penetration into the Local Environment in London (DAPPLE)”. It
demonstrates the use of the proposed approach for the event reconstruc-
tion problem in a highly urbanized environment.

1 Introduction

In emergency response management it is important to know the extent of the
area that might become contaminated following the release of dangerous ma-
terial in cities and the subsequent movement of polluted air. The lack of per-
tinent experimental information means there is a gap in the understanding of
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short range dispersion behavior in highly urbanized areas. Given a gas source
and wind field, we can apply an appropriate atmospheric dispersion model to
calculate the expected gas concentration for any location. Conversely, given con-
centration measurements and knowledge of the arrangement of buildings, wind
field and other atmospheric air parameters, identifying the actual location of the
release source and its parameters is difficult. This problem has no unique solu-
tion and can be analyzed using probabilistic frameworks. In the framework of
Bayesian approach, all quantities included in the mathematical model are mod-
eled as random variables with joint probability distributions. This randomness
can be interpreted as lack of knowledge of parameter values, and is reflected in
the uncertainty of the true values as expressed in terms of probability distri-
butions. Bayesian methods reformulate the problem thusly: by comparing data,
and efficient sampling of a group of simulations, to find a solution.

The problem of source term estimation has been studied in literature, based
on both the deterministic and probabilistic approach. [1] implemented an algo-
rithm based on integrating the adjoint of a linear dispersion model backward
in time to solve a reconstruction problem. [2, 3] introduced dynamic Bayesian
modeling, and the Markov Chain Monte Carlo (MCMC) sampling approaches
to reconstruct a contaminant source for synthetic data. Source reconstruction
in an urban environment using building-resolving simulations was studied in [4]
and [5]. [4] used an adjoint representation of the source-receptor relationship.
They used a Bayesian inference methodology in conjunction with MCMC sam-
pling procedures. This approach was validated using data from water channel
simulations and a field experiment (Joint Urban 2003) in Oklahoma City. In [5]
the authors applied the methodology presented in [2] to the reconstruction of
the flow around an isolated building and the flow during IOP3 (third intensive
observation period) and IOP9 of the Joint Urban 2003 Oklahoma City experi-
ment. In these experiments they found the source location ∼ 70m from the true
location for IOP3 (within the domain ∼ 400m×400m) while for the IOP9 model
errors and other uncertainties limit the ability to pinpoint the source location.

Methods of approximate Bayesian computation (ABC) are especially useful
for problems in which the likelihood function is analytically intractable or too
expensive to compute. The original version of the approximate Bayesian compu-
tation with Sequential Monte Carlo (ABC SMC) algorithm was proposed in [6].
Applications of this algorithm have been presented in a variety of areas including
population biology [7], genetics [8] and psychology [9]. Also, there has been an
increased interest in extensions and improvements of this algorithm, as demon-
strated in ([10], [11], [12], [13]). The more advanced form of the algorithm, which
relies upon the new idea ”Sequential Monte Carlo with Adaptive Weights”, is
shown in Algorithm 1 section 4 and was originally presented in [14].

Previously [15], we have tested the methodology by combining Bayesian in-
ference with MCMC methods and applied these to the problem of dynamic,
data-driven contaminant source localization, based on data from the the syn-
thetic experiment. In [16] various modifications of the MCMC algorithm to es-
timate the probability distributions of searched parameters were examined. We
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have shown the advantages of several algorithms. These algorithms use, in a
variety of ways, the probability distributions of the source location parameters
obtained based on available measurements. Once the new concentration data
are received, the marginal probability distribution of the selected parameters is
updated. We have also presented the application of the Sequential Monte Carlo
(SMC) methods combined with the Bayesian inference to the problem of locat-
ing the atmospheric contamination source based on synthetic experiment data
[17].

We propose algorithms to locate the source of contamination based on the
data from the central London DAPPLE experiment that was performed in May
and June 2007 (see section 2) [18]. We used the fast running QUIC-URB [19]
model for computing mean flow fields around buildings and QUIC-PLUME [20]
as the forward model to predict the concentrations at the sensor locations (sec-
tion 3). As a sampling approach in the event reconstruction procedure we used
the modern algorithm from the class of likelihood-free Bayesian methods [14]
with some extension, described in section 4.

2 Dispersion Experiments in London - DAPPLE

The DAPPLE experiment took place in central London (see fig. 1). The two
major roads in the vicinity are Marylebone Road, which runs from west to east,
and Gloucester Place, which intersects perpendicularly with Marylebone Road
near the Westminster City Council building (the red star in fig. 1) [18]. The mean
building height in the study area is 21.6m (range 10 to 64m). The experimental
site was chosen so as to have a diameter of approximately 500m in order to
cover the whole dispersion field. There are over 50 experiment sets of dispersion
from point sources in the whole DAPPLE data, but to address the issue of source
reconstruction we selected a time-resolved contamination experiment. A selected
release was carried out on the fourth day, 28th June 2007, in which a sequence
of ten samples was taken over a 30 minute sampling period at each of the 18
receptor positions. The sampling process included the collection of ten 150s
samples at each of the 18 sites, each sample separated from the next by 30s. The
source locations (green X point) and monitoring sites (numbered yellow points)
are shown on the map included in fig. 1. The total mass emitted from point-
source release was 323mg of perfluoromethyl-cyclohexane (PMCH,C7F14), in
accordance with experimental requirements. The other source locations Y and
Z were chosen and fixed for the run of experiments conducted during each tracer
day. This choice was based on analysis of the weather forecast on the preceding
day and a reconstruction of these sources is not present in this publication. Two
sets of long-term reference measurements were taken to generate the wind data
sets: the rooftop Westminster City Council (WCC) (18m) and tower top (190m)
winds. In order to not increase the height of the domain in the calculations only
data from WCC has been taken into account. All aggregate information of the
analyzed experiments and wind condition are shown in table 1.
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Fig. 1: The map shows the DAPPLE area of central London and is centered
at the focal intersection, that of Marylebone Road and Gloucester Place (at
51.5218N 0.1597W). The sampling receptors are numbered 1-18 (yellow dots).
Three fixed-point tracer sources (green dots X,Y and Z); red star - Westminster
City Council (WCC). The white rectangle shows the computational domain.

In fig. 1 the rectangle area was separated as a computing domain (white
line). The positions of all the objects (sensors, source, buildings, wind direction,
etc.) have been rotated by 17o angle, in order to fix the main streets parallel
to the edges of the domain. The latitude − longitude geographic coordinate
system was changed to the metric system with a reference point (0, 0). This
reference point denotes the lower left corner of the white rectangle, both for the
convenience of creating a domain and the presentation of results. The domain
after the transformation is presented in fig. 2a. All the information presented
above (experiment setup - table 1 and the geometry of the domain fig. 2) have
been introduced into the Quick-URB environment, which is described in the next
section.
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DAPPLE experiment summary
Date and time 28 Jun 07 13:00
Number of tracers released experiment 3
Number of samples and sample duration experiment 10x3 mins
Number of sampling sites 18
Range of source-receptor separations(m) 22-437
Point-source release total mass (mg) 323
WCC Roof data summary
Wind speed m

s
2.6

Wind direction +19
Longitudinal turbulence u′/UH 0.80
Lateral turbulence v′/UH 0.59
Vertical turbulence w′/UH 0.27

Table 1: DAPPLE and WCC summary [18]

3 Forward dispersion model - QUIC

The Quick Urban Industrial Complex (QUIC) Dispersion Modeling System is
intended for applications where dispersion of air pollutants released near build-
ings must be computed very quickly [20]. The QUIC system, comprises a wind
model - QUIC-URB, a dispersion model QUIC-PLUME, and a graphical user in-
terface. The modelling strategy adopted in QUIC-URB was originally developed
by Rockle [21] and uses a 3D mass-consistent wind model to combine properly
resolved time-averaged wind fields around buildings [22]. The mass-consistent
technique is based on a 3D complex terrain diagnostic wind model. The basic
methodology involves first generating an initial wind field that includes various
empirical parameterizations to account for the physics of flow around buildings.
Next, this velocity field is forced to be divergence free, subject to the weak con-
straint that the variance of the difference between the initial velocity field and
mass consistent final velocity field is minimized. The ability of the QUIC-URB
model to produce proper wind fields around buildings is dependent on the em-
pirical wind parameterizations. These parameterizations introduce rotation into
the flow field and without these parameterizations the method is essentially a
potential flow solver. QUIC-PLUME uses a stochastic Lagrangian random walk
approach to estimate concentrations in a gridded domain. The model is designed
to use averaged wind fields produced by the QUIC-URB system. Parcels, rep-
resenting substances, are transported with a vector sum of mean winds from
QUIC-URB plus turbulent fluctuating winds computed using the random walk
equations. Turbulence parameters required in the random walk equations are
estimated from vertical and horizontal gradients in the mean wind. A detailed
description of the theory is described in [23]. Fig. 2b shows a 3D domain model
of the part of London created in QUIC-GUI environment based on the extracted
most important buildings from fig. 2a. On the other hand, figs. 2c and 2d
present the output of subsystem QUIC-URB which is a wind flows map between
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the buildings obtained from WCC measurements. QUIC-PLUME is a ’forward’
model, that is run repeatedly for various parameter sets representing position
and sources based on the Bayesian inference tool presented in section 4.
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Fig. 2: a) The rotated DAPPLE area, with the selected buildings (black rectan-
gles) and greenery (green ellipses), created using the map from fig. 1 ; sampling
receptors are numbered 1-18 (yellow dots), three fixed-point tracer sources (green
dots X,Y and Z); red star - Westminster City Council (WCC) b) 3D model of
city buildings designed in QUIC-GUI base on the maps. c) map section present-
ing the wind vectors in the given points d) map presenting the strength of the
wind between the buildings in experimental area

4 ABC Methodology

Let θ be a parameter vector, with the prior distribution π(θ). The goal of
the Bayesian inference is to approximate the posterior distribution, π(θ|x) ∝
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π(x|θ)π(θ), where π(x|θ) is the conditional distribution of θ given the data x. The
main idea of Approximate Bayesian Computation (ABC) methods is to accept
θ as an approximate posterior draw if its associate data x is close enough to the
observed data xobs. Accepted parameters are a sample from π(θ|ρ(x, xobs) < ε)
where the ρ(x, xobs) is the chosen measure of discrepancy, and ε is a threshold
defining the ”closeness margin”. If ε is sufficiently small then the distribution
π(θ|ρ(x, xobs) < ε) will be a good approximation for the posterior distribution
π(θ|x). It is often difficult to define an adequate distance function ρ(x, xobs)
between the simulated and observed data, so in many cases it is replaced with
a distance defined by summary statistics, ρ(S(x), S(xobs)). However, as we are
considering values of concentrations in specific places at a set of time points, we
are able to compare those data directly without the use of summary statistics.

In ABC methods, Sequential Monte Carlo (SMC) is used in order to au-
tomatically, sequentially ”clean” the posterior distribution used to generate
proposals for further steps. In ABCSMC methods, the set of samples with
weights, called particles, sampled from the population with the prior distribution
π(θ), are propagated through a sequence of intermediate posterior distributions
π(θ|ρ(x, xobs) < εt), t = 1, ..., T , until it represents a sample from the target
distribution π(θ|ρ(x, xobs) < εT ). These methods aim to generate draws from
p(θ|ρ(x, xobs) < εt), at each of a series of sequential steps t, where εt defines a
series of thresholds. One of the most important issues in ABCSMC is the defin-
ing of the particle weights formula correctly. In [14] the authors propose strate-
gies called ABCSMC with Adaptive Weights (ABCSMCAW ). This method
includes a new step where the weights are modified according to the respective
values of x. Algorithm 1 shows the description of ABCSMCAW presented in
[14].

After initialization of the threshold schedule, first N samples are simulated
based on the predefined a priori distribution π(θ) and the corresponding accep-
tance condition ρ(x, xobs) < ε1. In time step t = 2 simple uniform weights are
changed based on additional kernel Kx,t(xobs|xt−1i ) proposed in [14]. Samples,
denoted by a tilde are drawn from the previous generation with probabilities
vt−1j . Using perturbation kernel Kθ,t(θ

t
i |θ̃i) new ”fresh” samples θti are obtained,

with the veracity of the condition ρ(x, xobs) < εt. The weights are calculated
according to the formula in step (11); in step (12) the weights are normalized
and the time step is increased - t = t+1. The procedure is repeated until t ≤ T .
In the section 4.1 the details are discussed, along with the motivation for choos-
ing specific components of the Algorithm 1 for the problem of stochastic event
reconstruction. More information and also theoretical aspects can be found in
[14].

4.1 Data and distance measure

In the problem of stochastic event reconstruction all observed data can be split
into two types of information: 1) concentration data from the sensor network,
and 2) background information. The background information consists of all of
the data included in the dispersion model e.g. strength and direction of the wind,
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Algorithm 0.1 ABC SMC AW
1. Initialize threshold schedule ε1 > ε2 > ... > εT
2. Set t = 1
for i = 1 to N do

3. Simulate θti ∼ π(θ) and x ∼ π(x|θti)
4. Until ρ(x, xobs) < εt
5. Set wti = 1

N

end for
for t = 2 to T do

6. Compute new weights vt−1
i ∝ wt−1

i Kx,t(xobs|xt−1
i ) for i = 1, ..., N

7. Normalize weights vt−1
i for i = 1, ..., N

for i = 1 to N do
8. Pick θ̃i from the set {θt−1

j }1≤j≤N with probabilities {vt−1
j }1≤j≤N

9. Draw θti ∼ Kθ,t(θ
t
i |θ̃i) and x ∼ π(x|θti)

10. Until ρ(x, xobs) < εt
11. Compute new weights as
wti ∝

π(θti)∑
j v
t−1
j Kθ,t(θ

t
i |θ

(t−1)
j )

12. Normalize weights wti for i = 1, ..., N
end for

end for

temperature and so on. To compute the ρ(x, xobs) value we use only data from
the sensor network which measures gas concentration ĈSji where i corresponds
to the time step and Sj is the sensor identifier. In this test case we have 18
sensors (S1, S2, ..., S18), whose positions are given in fig. 1 and fig. 2a as yellow
dots. We assume that the substance concentrations registered by the sensors
arrive subsequently at time intervals, hereafter referred to as ’time steps’. It is
important to know that for time step t only data ĈSj1 ĈSj2 . . . ĈSjt are available
and finally we have ten time steps (t = 10). The reconstruction algorithm starts
to search a source location (x, y) and release rate (q) just after the first 6 min-
utes (t = 2). To get the predicted concentration a QUIC-PLUME forward model
is running and it refers to the procedure x ∼ π(x|θti) in Algorithm 1. To run
a dispersion model and obtain data x we use source parameter vector θti and
the information obtained from the QUIC-URB subsystem. The simulated data
also have a form of concentration value CSji where Sj corresponds to the known
locations of j sensor.

The choice of distance measure or summary statistics is a crucial step in
ABC. Since distance measures are not sufficient in many cases, this choice in-
volves a trade-off between loss of information and reduction of dimensionality.
In those cases we chose to normalize approximation error between all the data
obtained to the current time step t which is also called Fractional Bias (FB) [24]
. The FB is used to indicate a bias towards underprediction or overprediction of
concentration data by the model. Due to the data type for all sensors in time
step t the ρ(xt, xtobs) measure is as follows:
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ρ(xt, xtobs) =
1

18

18∑
j=1

(
1

t

t∑
i=1

|CSji − Ĉ
Sj
i |

CSji + ĈSji
), (1)

under additional definition, that |C
Sj
i −Ĉ

Sj
i |

CSji +ĈSji
= 0 when CSji = 0 and ĈSji = 0.

Given that the concentration CSji ≥ 0, the value of ρ(xt, xtobs) is always between
0 and 1 . Let us notice that ρ(xt, xtobs) = 0 is the situation when our prediction
is perfect. In the opposite case, when ρ(xt, xtobs) = 1 the prediction is wrong. In
finding source parameters one of the most important areas is the detection time
window, when there is a measurement in the current sensor. The measure (1)
supports this approach, because when we have non-zero concentration in some
time steps but our model shows that there should be 0 concentration value, the
penalty value for this step will be 1. The situation is the same, if the observed
value is equal to 0 and the model shows a positive value of the concentration.
On the other hand, if CSji > 0 and ĈSji > 0 then the absolute difference also
has an impact on the value of ρ(xt, xtobs) measure. Finally, the contributions
of all time steps are averaged for one sensor. Because ρ(xt, xtobs) ∈< 0, 1 > one
sensor cannot corrupt the overall ρ(xt, xtobs) value. Also, each sensor has an equal
contribution to the ρ(xt, xtobs) measure, regardless of the level of concentration,
which is of course smaller in sensors located further from the source.

4.2 Threshold schedule and weights

The most commonly used adaptive scheme for threshold choice is based on the
quantile of the empirical distribution of the distances between the simulated
data and observations from the previous population, (see [8], [13]). The method
determines εt at the beginning of the t time-iteration by sorting the measure
ρ(xt−1i , xt−1obs )1<i≤N and setting εt such that αt percent of the simulated data
ρ(xt−1i , xt−1obs )1<i≤N are below it, for some predetermined αt. In [12] the authors
show a new strategy based on an acceptance rate curve but also discuss a cu-
mulative number of simulation versus different threshold schedules. In this, and
many other cases, quantile-based methods seem to be an easy and appropri-
ate solution of estimating εt. Based on our own preprocessing experience we
set quantile α2 = 0.7 in the second time step, that subsequently decreases to
α10 = 0.3 for t = 10 [12]. The additional kernel Kx,t(xobs|xt−1i ), which is used in
calculating the weights, depends on observed and simulated data. Since weights
are normalized in step (7), in Algorithm 1 we can simply use the ρ(xt, xtobs)
measure as the proposed kernel. Due to the restriction 0 ≤ ρ(xt, xtobs) ≤ 1 we
can define Kx,t(xobs|xt−1i ) ≡ 1−ρ(xt−1i , xobs), because the greater weight should
correspond to a better solution.

4.3 Transition kernel

We chose transition kernel Kθ,t(·|·) to be a Gaussian kernel. Unfortunately in
this type of inverse problems the parameters are often highly correlated and
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Fig. 3: a) all samples - grey point, selected samples - green and magenta crosses;
b) M-nearest samples to selected green point are marked by blue circles, for
magenta green circles; c) multivariate normal perturbation kernels evaluated
from a set of M − neighbors samples for two selected points.

multimodality is very common. Especially when the (x, y) domain contains a lot
of prohibited regions, like buildings. Samples may tend to split in a disjointed
group by filling out different street canyons. In such cases it is interesting to
consider the use of a local mean and covariance matrix. Instead of computing
the covariance matrix based on all the samples from (t−1), a better idea is to use
only limited information about the local correlation. In [11] one of the proposed
methods is to use the multivariate normal kernel based on the M neighbours.
Application of that procedure is presented below:

After the procedure of drawing a new sample from local multivariate normal
perturbation kernel, if a new sample is accepted, new weights are also computed
using this empirical kernel. The authors in [11] pay attention to the disadvantages
of choosing this perturbation kernel. First, the parameter M typically has to be
fixed before any of the information about the posterior are known (too small a
value of M may lead to a lack of exploration of parameter space, while too large
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Algorithm 0.2 ABC SMC AW Step 8

8. Pick θ̃i from the set {θt−1
j }1≤j≤N with the probabilities {vt−1

j }1≤j≤N .
8.1 Select M-nearest samples to θ̃i from the set {θt−1

j } by using Nearest Neighbors
Algorithm.
8.2 Compute the empirical covariance

∑t
θ̃i,M

and mean θ̄ from the M nearest neigh-

bours samples of θ̃i.
8.4 Set local perturbation kernel Kθ,t(θ

t
i |θ̃i)asN(θ̄,

∑t
θ̃i,M

).

would offer little or no advantage compared to the standard multivariate normal
kernel). In our case the number of samples allocated to one time step is N = 1000
samples for each time step. Based on pre-processed experiments we determined
the number of neighbors M = 70. This kind of procedure may seem to be compu-
tationally expensive. However, in experiments the M −NearestNeighbors mul-
tivariate normal perturbation kernel minimizes the number of samples needed
to be generated, which in the case of stochastic event reconstruction problems
is highly preferred. Furthermore, the computation time of running the forward
model is much longer than the start-up procedure for finding the nearest neigh-
bors and computing covariance estimation. It is worth mentioning that the choice
of the correct determination of the NearestNeighborsAlgorithms is important
and depends on the problem.

In the experiment presented in this publication we use classical M-Nearest
Neighbors algorithm with Mahalanobis distance due to the differences between
the various dimensions of the parameters. Results of an experiment using this
procedure are presented in fig. 3. This experiment refers to the source location
(x, y) but the samples are three-dimensional vectors. We can see that the set
of possible solutions is spread among the buildings. Sub-optimal solutions are
related to two cases, where the first involves possible sources located in the cen-
ter of the domain, as contrasted with the north-east location. In fig. 3 a) the
selected sample is illustrated by a green and magenta cross surrounded by all the
samples - i.e. grey points. In fig. 3 b) the M nearest samples are marked by blue
circles relative to green points and green circles relative to magenta samples.
Finally, in c) the subplot shows empirical multivariate normal kernel evaluated
from the set of M − neighbors samples for two sets of samples. The shapes
of kernel correspond to the correlation between x and y parameters and also
support only a single candidate solution. It is worth noting that the locations
inside buildings are permitted although the launch dispersion model for these
sites is impossible. Consequently, if the drawn sample in step 3) θti ∼ π(θ) and
step 9) θti ∼ Kθ,t(θ

t
i |θ̃i) in Algorithm 1 does not satisfy the assumptions then

there is a re-drawing of the θti sample. The next section presents the results for
the stochastic parameters reconstruction for the setup described above and the
experimental data presented in section 2.
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Fig. 4: A scatter plot of all samples generated in the subsequent time steps t =
2, 3, ..., 10 in (x, y) space of source location. The red cross marks the true source
position

5 Results of DAPPLE reconstruction experiment

Fig. 4 shows the locations of the buildings in the DAPPLE London area, together
with all the samples generated in subsequent time steps t = 2, 3, .., 10 which are
decomposed directly to 6, 9, .., 30 experimental minutes. As we can see, samples
after the 4th time step converge from all possible (x, y) space to the vicinity
of the actual source location. Using these samples, we construct the marginal
probability distributions for the source location and release rate, as shown in
fig. 5 for all time intervals. As time goes on, the mass of probability distribution
is concentrating in the vicinity of the proper values of x and y. This looks quite
different for emissions amounts, where posterior distribution for the parameter
q looks like a bimodal distribution. This is better shown in figure fig. 6 where
all samples are included.

After limiting the (x, y) domain to the area surrounding the real source, we
can see that the distribution is divided into two areas, which suggests two dif-
ferent solutions of the problem. One location is closer to the main intersection
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Fig. 5: Evolution of the marginal posteriori probability distribution for x, y and
q parameters for time steps t = 2, 3, .., 10. The red vertical line represents target
value of parameters.



60 Piotr Kopka et al.

and the second is around the true source. These results can be also noticed in
the marginal distributions for x where we note two picks of probabilities. The
results from all time steps are summarized in a so-called trellis plot presented
in fig. 6, where the parameters reconstruction was started after 6 minutes. A
color pattern reflected in fig. 6 was used to show empirical 2D probability dis-
tribution of all parameters combinations. The colored contour lines are envelop-
ing higher probability at the joint posterior distributions. The diagonal plots
are marginal empirical posterior distributions of the forward model parame-
ters. The real parameter values from the field experiment are highlighted with
vertical red lines in diagonal plots and black cross markers on the other sub-
plot, which are successfully captured by the high posterior probability region.
The correct position obtained after the transformation of the relative domain
is x = 243m, y = 282m and q = 323mg, where the most probable parameters
values are P (x = 223.0 ± 7.6m) = 0.0632 , P (y = 291.4 ± 6.7m) = 0.1990 and
P (q = 144.9±5.3mg) = 0.0218. To accurately analyze the results for release rate
parameter in fig. 7 a) we split the samples into two groups supported by two sep-
arate probability masses. After this assumption, two different groups of samples
are presented in fig. 7 b). One can see that the green samples corresponding to
q < 250mg are distributed closer to the center, while the blue points are closer
to the true source (red cross) and the corresponding estimates of q = 323mg
group closer to the real value (see fig. 7 a) red vertical line). Fig. 7 c) shows two
histograms of weights 1− ρ(x10, x10obs) for the green and blue points. As we can
see, more points from the blue subset have higher weights (better model fit).
As it means that the points have higher probability to be drawn in the next
step, we can conclude that with the extension of the reconstruction procedure
the ”green” solutions should be slowly converging to the other (blue solution)
which is close to the true value of the source parameters.

6 Conclusion

A stochastic event reconstruction method for atmospheric contaminant disper-
sion in an urban environment has been presented. The method described in
section 4 is based on Bayesian inference with the Approximate Bayesian Com-
putation (ABC) tool with an extension. Fast-running QUIC-PLUME dispersion
models have been adopted as the forward model in the Bayesian framework. The
dispersion model has been uniquely enhanced by taking into account empirical
wind turbulence between buildings obtained from the QUIC-URB tool. Addi-
tional attention was given to the formulation of the distance function to take into
account concentration measurements provided in successive time steps that can
be available from a sensor network. The event reconstruction method has been
successfully validated against the real DAPPLE experiment. In particular, the
modeling of a priori distribution based on the threshold schedule substantially
improved the results. Also the transition kernel set treated as a local empirical
distribution, conformable to the non-standard domain, had an impact on conver-
gence. In the event reconstruction of the DAPPLE tracer experiment, up to three
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Fig. 6: Bivariate and marginal posterior distributions for all parameters θ ≡
(x, y, q). The plot is colored according to probability density, where the most
probable regions are colored the deepest red (i.e., a heatmap). The vertical red
lines in diagonal plots (black cross in bivariate) show the real value of each
parameter. The distributions are built based on all the samples generated in the
reconstruction procedure.
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sets in a) c) The histogram of weights, which was obtained from the two groups
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parameters were estimated. From a practical point of view, release location and
emission rates are of the greatest significance to the emergency responders. The
present study has shown that the event reconstruction problem can be solved
for the urban area without using the time-consuming Computational Fluid Me-
chanic model. Posterior probability distributions of model parameters were also
used to build priori distribution when new concentration data became available.
Although the ABC framework is general, a comprehensive operational event re-
construction tool needs to address various release scenarios. The present study
focused on steady point source releases in a highly urbanized area. However, pos-
sible release scenarios may include moving sources. Furthermore, the scale of the
event may range from local sites to areas of greater size. Future work will concen-
trate on adding new possible hazardous scenarios to the present stochastic event
reconstruction tool, not necessarily the release of gases into the atmosphere.
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Abstract. Hyperpolarization can increase signal in NMR experiments
by up to 4 orders of magnitude. Among available techniques, hyperpo-
larization dissolution DNP (dissDNP) is particularly interesting in the
clinical setting as a non-radioactive method for provides novel diagnostic
data.
This study is focused on the application of concentric rings sequence.
This sequence is based on gradient train to simultaneous acquisition of
spatial and spectral dimensions, to imaging hyperpolarized pyruvate and
its spectral downstream metabolites alanine and lactate. The study aims
to include non-localized spectroscopic information in the image recon-
struction process.
A better robustness was found for our method than for the previously
published alternative. With an improved spectral resolution via the in-
herent sampling of k-space zero, central concentric rings can be a valuable
alternative in 13C hyperpolarization studies.

1 Introduction

Nuclear magnetic resonance (NMR) is a phenomenon commonly used in medicine
and chemistry to determine structure, magnetic properties and chemical com-
position of the tissue. Although NMR could provide in vivo spatially resolved
information, its application is limited by inherent low signal to noise ratio (SNR).

As a remedy for low SNR a few methods for hyperpolarization were in-
troduced. Hyperpolarization can increase the signal in NMR experiments by
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up to 4 orders of magnitude. Among the available techniques dissolution DNP
(dissDNP) is particularly interesting in the clinical setting potentially providing
useful diagnostic data[1].

In hyperpolarization chosen compounds are prepared (hyperpolarized) in a
polarizer and then administrated to study a particular organ of interest. Hyper-
polarized [1-13C] pyruvate was used in clinical trials [1] and applied in number of
cancer models (e.g. [2]) or metabolic impairments (e.g. [3]). This boosted interest
in the application of hyperpolarized pyruvate as a new generation of contrast
agents in clinical trials. The introduction of dissDNP to pre-clinical and clinical
studies requires fast and robust sequences maximizing the obtainable informa-
tion.

For imaging of spatial concentration of pyruvate and its metabolites methods
known from magnetic resonance spectroscopy imaging (MRSI ) can be adopted.
The signal in MRSI can be described as linear combination of finite number of
metabolites

z(t) =

M∑
m=1

Am ∗ zm(t) =

M∑
m=1

Ak ∗ exp(−t/T2m + i ∗ 2πf0m + i ∗ φ0m) (1)

where: Am - amplitude of k-th metabolite; T2m - spin spin relaxation constant;
f0m - frequency of chemical shift; φ0m - initial phase;

Equation 1 shows some important aspects of signal in magnetic resonance
spectroscopy: the signal relaxes with a time constant T2; the signal of k-th
metabolite rotates around frame of reference with a frequency f0 (i.e. chemi-
cal shift frequency). Frequency f0 is a quantity which allow for distinguishing
between chemical compounds. The amplitude of a signal is proportional to con-
centration of the metabolite. Relaxation process in general can be multiexpo-
nential not just monoexponatiol as presented in eq. 1

Fig. 1: Model used for simulation of signal evo-
lution; (kpl, kpa) are apparent reaction rates;
R1θ are relaxation rates which includes 1/T1
relaxation rates and lost of signal due to exci-
tation

For compounds of interests
in hyperpolarized magnetic res-
onance i.e. pyruvate, lactate,
alanine, pyruvate hydrate chem-
ical shift and frequency for B0

3.0T as used in this study listed
in table 1. Frequency can be
changed by modulating with
carrier frequency in the receive
path.

Model of signal kinetic is
presented in figure 1. After in-
flowing to organ of interest
pyruvate is metabolized to lactate and alanine with a rate kpl and kpa respec-
tively. For all metabolites pyruvate, lactate and alanine signal decay is observed.
This loss is caused by T1 relaxation and excitation.

Imaging of the metabolite spatial concentration require choosing k-space tra-
jectory. An arbitrary 2d k-space trajectory signal acquired in magnetic resonance
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scanner is described by equation 2 adopted from [4]. Equation 2 presents situa-
tion after slice selective excitation.

S(t) =

M∑
m=1

∫ ∫
Am(x, y)zm(t)exp(i(xkx(t) + yky(t))dxdy (2)

where: k(t) = (kx(t), ky(t)) is an arbitrary k-space trajectory. When k(t) is
chosen to be Cartesian trajectory Am(x, y) can be reconstructed by Fourier
transformation. When k is an arbitrary non-cartesian trajectory Am(x, y) has
to be reconstructed by non-uniform Fourier transformation (problem of type I
non-uniform Fourier transformation [5]) or gridding algorithm.

Pyruvate Lactate Alanine Pyruvate
Hydrate

Chemical
shift [ppm]

170.6 183.2 176.5 179.0

Resonance
frequency [Hz]

-200 192 -23 67

Table 1: Chemical shift for a compounds of interest in hy-
perpolarized magnetic resonance [6]. Chemical shift listed
for compounds labelled on [1-13C] position. Resonance
frequency given for B0 3.0T as used in this study.

Transformation of
the coordinate sys-
tem requires multi-
plication of the new
coordinate system by
a determinant of Ja-
cobian of transfor-
mation. That can be
also thought as fil-
tering with density
compensation func-
tion (dcf ) where data
sampled in a denser
region of k-space has

to be penalized/filtered.
Equation 2 identifies that except of spatial dimensions, a spectral dimension

has to be encoded as well in acquisition. Further this simplified scenerio is only
valid in the static case. In fact living organisms are dynamic and impairment
of homeostasis often leads to severe diseases. This made a need for dynamic
metabolic imaging study. In this case Am(x, y) is also function of t - Am(x, y, t).

In effect, the signal evolves in 5 dimensions - 3 spatial - 1 spectral and 1
temporal. A number of methods have been designed for image acquisition of the
high-dimensional space in hyperpolarized MR. Some of them were recently re-
viewed [7]. The other method which allowed for fast spectroscopic acquisition are
spatiotemporal encoding[8] or balanced steady state free precession (bSSFP)[9]
and MAD-STEAM[10]. When off-resonant effects can severely distort images,
sequences that that provide full spectral information are preferred [7], thereby
limiting the acquisition options.

Probably the most commonly used sequence is free induction decay chemical
shift imaging (13C-FID-CSI ) which compresses time domain to one point. It
relies on the sequential acquisition of FID from consequent k-space points which
are determined by phase encoding gradients. If a whole acquisition of 13C-FID-
CSI could be reduced to one moment in time then the image is a linear function
of true enzymatic conversion [11].
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The methods commonly used in full spectrum acquisition utilize gradient
echo trains, which rely on traversing through k-space in a periodic manner. This
allows for simultaneous acquisition of spatial and spectral dimensions. Depend-
ing on the k-space trajectory, there are a few measurement options: echo-planar
spectroscopic imaging (EPSI )[12], spiral-chemical shift imaging[13] and intro-
duced most recently concentric rings[14].

This paper is organised as follow: section 2.1 contains numerical simulation
for effects of using 13C-FID-CSI sequence to study dynamic process. Section
2.2 suggest a fast method for acquisition in hyperpolarized magnetic resonance,
and is then compared to other similar sequence.

The main innovation of this work is the application of concentric rings se-
quence for imaging hyperpolarized [1-13C] pyruvate and its spectral downstream
metabolites ([1-13C] alanine and [1-13C] lactate. The aim was to include in-
formation from the central k-space point (i.e. non-localized spectroscopy) in
the reconstruction process. We refer to this version as central concentric rings
(cCR), which are different to previously published non-central concentric rings
(ncCR)[14].

2 Results

2.1 Simulation of signal dynamic in hyperpolarized 13C MRSI

13C-FID-CSI sequences with phase encoding schemes in fig. 3 was simulated for
reconstruction matrix 16x16; repetition time (TR) 80 ms; flip angle θ 10◦. True
enzymatic conversion rates were defined as a Shepp Logan-like phantom (fig. 2).
Lactate and pyruvate noise-free images were simulated by the one-way kinetic
linear model with fixed relaxation rate T1 = 45 s for all metabolites. Dirac’s
delta was chosen as the arterial input function (AIF ). Using the same approach
an EPSI sequence behaviour was simulated (TR 200 ms; θ = 10◦).

Fig. 2: Left: a numerical phantom used to simulate metabolic signals; kpl val-
ues shown on color bar; Right: signal of pyruvate lactate alanine and lac-
tate/pyruvate ratio for distinct areas of phantom.
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Qualitative analysis of CSI sequences with different starting times with re-
spect to bolus arrivals are presented in fig. 3. The upper row shows results for
CSI sequential phase encoding and the bottom row shows results for in-out phase
encoding scheme. A Shepp Logan shaped phantom (fig. 2) was used for simu-
lation. Each voxel was represented as two values (kpl, kpa) which are apparent
reaction rates of pyruvate to lactate and pyruvate to alanine. A voxel signal was
simulated using model shown in figure 1. Then, the signal in a point in time was
sampled in k-space. At the end of whole acquisition the signal was transformed
back to the final image. Figures 3 and 4 show values of the lactate/pyruvate
ratio, which typically reflects kpl parameter and is a promising marker in cancer
diagnostic. Figure 2 shows how the lactate/pyruvate ratio is changing during
sampling of images.

The amount of blurring is substantially reduced by applying fast spectro-
scopic sequences, which can be clearly observed in figure 4.

Fig. 3: Left: Phase encoding schemes for 13C-FID-CSI typically used in hyper-
polarized magnetic resonance imaging. Top row sequential order, bottom from
origin to edge of k-space - in-out order. Right:Simulation of CSI images (top:
sequential CSI; bottom: in-out CSI) with varied starting time with respect to
bolus arrival (-5, 0, 5, 10, 20 and 30 seconds after bolus)

Our simulations show a need for applying fast schemes in hyperpolarized
magnetic resonance.

2.2 Concentric rings trajectory

An additional halving of acquisition time can be obtained by using concentric k-
space instead of Cartesian readout trajectories. Concentric ring trajectory have
been shown to be a viable alternative to EPSI by Jiang et al [14]. However in this
version of concentric rings central k-space point is omitted during acquisition. As
mentioned in section 1 transformation of the coordinate system require including
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Fig. 4: Simulation of EPSI images with varied starting time with respect to bolus
arrival (-5, 0, 5, 10, 20 and 30 seconds after bolus)

determinant of Jacobian matrix for the transformation. For a transformation to
polar coordinate the determinanat: |J | = r. In result for a central k-space point
where r = 0, data from central k-space point vanishes. However this is true only
for continues case. For a discrete case central k-space point should be weighted
with π · dr2/4 as shown is figure 5.

Fig. 5: Ilustration of area covered by k-space points for cCR (left) and ncCR
(right). Area correspond to the value of density compensation function for re-
spetive points. Central points in left image correspond to area πr2 where r radius
of smallest circle

K-space data was regridded to a Cartesian grid with the density compensa-
tion function (cf. [15]) as defined in eq.3. Then data was transform to an image
domain with inverse Fourier transformation.

dcf(r, φ) = r · dr · dφ
dcf(0, φ) = π · dr2/4

(3)

2.3 Numerical simulation of concentric rings trajectory

Image Reconstruction Toolbox[16] was used for efficiency comparison of the cCR
and ncCR k-space signal. The simulation was performed on high resolution regu-
lat Shepp Logan phantom. Normally distributed random noise was added to the
complex signal in the k-space domain. Then, the reconstructed image was com-
pared to Shepp Logan phantom with mutual information. The advantage of this
metric is a clearly defined lowest (0) and highest values (entropy of reference im-
age). Mutual information between images was computed after discretizing both
to 256 bins.
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Analysis for cCR and ncCR (fig. 6) with a presents of noise, shows a better
cCR performance. Artifacts in the corner are originating from the point spread
function (PSF ) of cCR and ncCR sequences[15].

Fig. 6: Monte Carlo simulation of cCR and ncCR sequences. Mutual Information
with Shepp Logan phantom vs noise level for central Concentric Rings (blue)
and non-central Concentric Rings (red); Shepp Logan phantom entropy (dashed)

2.4 Phantom measurements with concentric rings

Further comparison of cCR and ncCR sequences were performed by phantom
measurements in thermal equilibrium condition. Sequences were designed for
500 Hz spectral bandwidth; 100 ms readout time. Data were phase corrected
linearly in readout direction. Data was regridded to a Cartesian grid with den-
sity compensation function as defined in eq. 3. 15 repetitions of sequence were
acquired.

The phantom consisted of a sodium acetate syringe and a bicarbonate ball.
Thermal equilibrium phantom measurements (TR=2000 ms; θ = 90◦) was done
on 3T clinical MR scanner (GE HDx, USA) and dual-tunned 1H −13 C-volume
coil[17].
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sequence mean ± sd [au]
cCR 24.89 ± 1.05
ncCR 29.59 ± 1.07

Table 2: Residuum between real data
and fitted model for phantom measure-
ments summed over whole image space.
Criterion of type less-better. Difference
between values statistically significant.

Protocols were compared by using
t-test for the sum of residuals between
data and damped sinusoidal model [18]
as defined in equation 1. Nonlinear
least square method (trust region re-
flective algorithm [19], [20]); was used
for fit model parameter (Ai, f0, T2, φ0)
to the data. Initial guess was chosen as
f0 =

∫ ∫
|A(x, y)|dxdy; 1/T2 = 15 Hz;

Am = max(|ρz(x, y)|).
Criterion is type less-better. Results for phantom measurements are sum-

marised in table 2. cCR shows a statistically significant better performance over
ncCR (p-value¡0.05).

2.5 In vivo measurements - proof of concept

Final validation of cCR as described in section 2.4 (TR=200 ms; θ = 12◦) was
done by in vivo measurements in a healthy rat. One injection of 1,5 ml, 90 mM
hyperpolarized pyruvate (polarizer SpinLab, GE, USA) was performed.

In vivo results show good quality of spectra in a single voxel (fig. 8). Figure
7 shows feasibility of dynamic studies with cCR sequences.

Fig. 7: Hyperpolarised pyruvate and its metabolites: lactate (Lac), alanine (Ala)
and pyruvate hydrate (PyrH) 17s (top row) and 29 s (bottom row) after injection

3 Discussion/Conclusion

Different Cartesian acquisition schemes for hyperpolarised 13C were analysed in
noise free environment, the results elucidate benefits of applying fast acquisition



Central Concentric Rings in 13C Hyperpolarization 73

Fig. 8: Left: Pyruvate concentration overlayed on anatomical detailed image.
Right: Single voxel spectrum with clearly resolved pyruvate, lactate and pyruvate
hydrate peaks and spurious alanine peak

schemes for a 13C DNP-MRSI study. However 13C-CSI sequences are in use
because of robustness in the presence of noise.

Assuming AIF is Dirac’s delta exaggerate disadvantages of slow sequences.
In a more realistic situation AIF is blurred in time which justify the application
of slow sequences. Deep analyzes of effects of different AIF is far beyond of scope
of this article.

Even faster schemes than EPSI i.e. concentric rings was analysed. cCR
method was found more robust, with an improved spectral resolution via the in-
herent sampling of k-space zero in cCR compared to the ncCR method. Further
feasibility of using cCR sequence for animal studies was shown. The combination
of excessive oversampling of the k-space center and optimal sampling patterns
ensures a robust and versatile method, without comprising the irrecoverable hy-
perpolarisation.
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Abstract.

Efficient analysis of consumer’s preferences is a crucial problem in recommender
systems. However, in practice we often have to deal with different types of vague-
ness of the data. Due to the large number of products in the databases, the
knowledge of each user is usually incomplete and the ratings are often uncertain
(i.e. the same ratings for different products). In this paper we discuss several
IF-sets based methods, that are helpful in vague preferences modeling and use
full available knowledge about user preferences, to support customers decisions
in most appropriate way. We show how to improve algorithms applied in recom-
mender systems using these methods.

We also show some IF-set based modifications of the probabilistic models
applied in the instance-based label ranking algorithms, which improve their per-
formance and make them applicable in content-based recommender systems.

Finally, we propose a novel methodology for graphical summarizing of pos-
sible recommendations that enables a user to choose such recommendation that
fits best to his individual decision-making strategy, e.g. corresponding to his
attitude to risk.

1 Introduction

The main goal of a recommender system is to generate meaningful recommen-
dations for items or products that might be interesting for a user. Two basic
architectures of recommender systems may be highlighted: content-based filter-
ing (focused on the similarity of items determined by measuring the similarity
in their properties) and collaborative filtering systems (focused on the similarity
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of items determined by the similarity of the ratings of those items rated by the
users). The problem of preference modeling is common in both types of recom-
mender systems. These preference systems in real world applications are usually
vague due to the large number of products rated by users with only partial
knowledge about the whole set of analyzed items. In this paper we show, that
IF-set based model can be a very useful tool while representing vague preferences
and can be successfully applied in recommendation algorithms.

In this contribution we also discuss the choice of a recommendation strategy.
The majority of methods proposed in the literature, in general, focus on provid-
ing the final recommendation to the user. The final recommendation strategy is
assumed at the level of designing the recommender system, which means that it
must be chosen to fit the individual decision making strategies of the users. This
is rather a difficult problem. We can imagine a very common situation when
two items are rated by significantly different number of users. The decision how
to deal with aggregation of ratings for such item has to be made before pro-
viding a user with a final recommendation. Another point concerns the case of
different degree of knowledge or experience connected with every user. One may
ask, whether we should treat ratings given by the user who has experience with
100 products equally to the rating given by the user who knows only 2 items?
We can use i.e. logarithmic weighting to differentiate the impact of more and
less competent users, but if a product was rated only by inexperienced users, the
overall rating of it, without any additional information, might still be misleading
. Providing user with some aggregated value of the level of experience of people
who rated this item seems to be a natural solution to this problem. There are
also some contributions proposing trust-aware recommendations (see [1],[2]), but
these approaches do not take into consideration the experience of the user with
respect to his previous products history.

In this paper, we propose some new tools like entropy-based similarity or
a graphical method for comparing recommendations, that may be considered
interesting and turn out useful in solving mentioned problems. We show how to
use this new idea in collaborative filtering, and how to apply it to build compu-
tationally efficient predictive models in content-based recommender systems.

2 Modeling preference systems

Let X = {x1, . . . , xn} denote a set of objects (e.g. films, books or other goods).
A user A is associated to a vector RA = (A1, . . . , An), where Ai describes a
position of element xi among all other elements in X in his preference system
according to objects from X.

If all elements {x1, . . . , xn} create the total order (complete information and
no ties), then RA is just a ranking. For example, if we get the following vector
RA = (1, 3, 4, 2, 5, 6) then it means that in A’s opinion the most favorite element
in the set {x1, . . . , x6} is x1, the next one is x4, then we have x2, x3, x5, and the
worst is x6.
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However, in real databases used in recommender systems, due to the large
number of products, users knowledge about all of them is limited and their
rankings may be incomplete or some elements may be indistinguishable. Thus,
in general, a vector RA may be not a representation of the total order of n
objects. Suppose, e.g., that we get RA = (1, 2, 3,NA,NA, 2). In this case x1 is
the most favorite element. Then observer A indicates two elements x2 and x6

but he cannot decide which one of these two objects is better. The next one
is x3 and finally, there are two non-classified elements x4 and x5, described by
NA, (i.e. “not available”). Further on, we will reserve the word “ranking” only
to vectors describing linearly ordered elements. A general case that allows also
partial orders we will call a preference system.

There are several methods of dealing with preference systems with missing
information and indistinguishable elements. One possibility is omit such data.
Appropriate imputation method to transform a vague preference system into a
ranking may also be used. The first method leads to loss of information about
the amount of knowledge possessed by users, whereas the second may be criti-
cized for unavoidable subjectivity. Thus, we propose to use the model admitting
vague preference systems that was proposed by Grzegorzewski (see [3],[4]). This
model deals with both well-ordered items, possible ties, missing ranks and non-
comparable elements. The key idea in construction proposed in [3],[4] is to rep-
resent a vague preference system by the appropriate IF-set. Due to such kind of
representation, we can take advantage of the broad apparatus of mathematical
methods defined for IF-sets.

Let U denote a usual set, called the universe of discourse. An IF-set (Atanassov’s
intuitionistic fuzzy set, see [5]) is given by a set of ordered triples C̃ = {(u, µC̃(u), νC̃(u)) :
u ∈ U}, where µC̃ , νC̃ : U→ [0, 1] stand for the membership and nonmembership
functions, respectively. It is assumed that 0 ≤ µC̃(u)+νC̃(u) ≤ 1 for each u ∈ U.

Consider any finite set of objects X = {x1, . . . , xM}. Given any user A let us
define two functions wx, bx : X→ {0, 1, . . . ,M−1} as follows: for each xi ∈ X let
wA(xi) denote a number of elements in X surely worse than xi, while bx(xi) let
denote a number of elements surely better than xi, with respect to the preference
related to user A. Next let

µÃ(xi) =
wA(xi)

M − 1
, νÃ(xi) =

bA(xi)

M − 1
. (1)

denote a membership and nonmembership function, respectively, of the IF-set
Ã = {(xi, µÃ(xi), νÃ(xi)) : xi ∈ X} describing the preference system connected
with user A.

Using above representation (1), the following vector corresponding to the
preference system of one of users R1 = (1, 2,NA, 2, 3,NA) can be represented
in the form of an IF-set where the values for membership function are equal to
µR̃1

= (0.6, 0.2, 0, 0.2, 0, 0) and the non-membership function νR̃1
= (0, 0.2, 0, 0.2, 0.6, 0)

respectively for elements x1, . . . , x6.
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3 Preferences in Collaborative Filtering - Finding Similar
Users

Measuring similarity between preferences is a crucial problem for collaborative
filtering recommender systems. This task becomes significantly harder when pref-
erences are incomplete or somehow vague.

In previous section we have shown the way of modeling preference systems
by IF-sets. Since our main goal is to compare preference systems hence one may
ask about methods for IF-sets comparison. This topic seems to be interesting not
only in our context. Three general types of comparison measures were discussed
in [6]: IF-distances, IF-dissimilarities and IF-divergences, and some relationships
between them were also examined.

In [7], [8], we discussed the problem of choosing similarity measure between
preference systems, with appropriate properties to be applied in collaborative
filtering recommender systems. Below we mention the list of requirements that
were proposed in [8]:

(C-1) A similarity measure between preference systems A and B takes its max-
imal value if and only if A and B are perfectly concordant rankings.

(C-2) A similarity measure between preference systems A and B takes its min-
imal value if and only if A and B are perfectly discordant rankings.

(C-3) A similarity measure between two preference systems A and B is larger
than between C and D if and only if a correlation between A and B is
stronger than between C and D.

After analyzing several types of similarity measures, we propose two similar-
ity measures with desired properties proved in [8]:

SE(R1, R2) = 1−

√
3(n− 1)

n(n+ 1)
DE(R̃1, R̃2) (2)

and

SH(R1, R2) = 1− 2(n− 1)

n2
DH(R̃1, R̃2). (3)

where

DE(R̃1, R̃2)2 =
1

2

n∑
i=1

((µR̃1
(xi)− µR̃2

(xi))
2 + (νR̃1

(xi)− νR̃2
(xi))

2), (4)

and

DH(R̃1, R̃2) =
1

2

n∑
i=1

(|µR̃1
(xi)− µR̃2

(xi)|+ |νR̃1
(xi)− νR̃1

(xi)|). (5)

Both (2) and (3) reach their maximal values if and only if R1 and R2 are perfectly
discordant. However, although (2) reaches its minimal value if and only if R1 and
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R2 are perfectly concordant, (3) reaches its minimal value not only for perfectly
discordant preference systems.

According to property (C-3), we compared the behavior of measures (2) and
(3) with the generalized Kendall’s τ and Spearman’s ρ defined in [4], [9]. The
generalized Kendall correlation coefficient ([4]) is defined as follows

τ̃ =
1

2n(n− 1)

n∑
i=1

n∑
j=1

[sgn(µA(xj)− µA(xi)) · sgn(µB(xj)− µB(xi)) (6)

+sgn(νA(xj)− νA(xi)) · sgn(νB(xj)− νB(xi))],

The generalized Spearman coefficient ([9]) is defined by

r̃s(A,B) = 1− 3(n− 1)

n(n+ 1)

n∑
i=1

[(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))

2]. (7)

In [8], we proved the following property of measures SE and SH :

Proposition 1. Let A,B,C,D ∈ IFS(X) describe preference systems with re-
spect to elements of X = {x1, . . . , xn}. If r̃s(A,B) ≤ r̃s(C,D), then SE(A,B) ≤
SE(C,D).

and the following lemma for measure SE :

Lemma 1. Let A,B,C,D ∈ IFS(X) describe preference systems with respect
to elements of X = {x1, . . . , xn}. If r̃s(A,B) < r̃s(C,D), then SE(A,B) <
SE(C,D).

From 1 and 1 we can observe that measures (2), (3) posses desired properties
connected with (C-3).

As measures (2), (3) pretend to behave properly in recommender system
environment, we can consider the further steps of creating recommendations.
The simplest way of recommending a new item to a user A is to find another
users (say B1, . . . , Bk) with preferences similar to A and to suggest A some
resources highly preferred by B1, . . . , Bk which are yet not known to A.

However, during our experiments, we noticed that the situation where sev-
eral users have identical preference systems (also no additional products known
by some of B1, . . . , Bk) is quite common. What is more, in [8], we proved the
following property of measure SH :

Proposition 2. Let R1 and R2 denote two preference systems with respect to
n objects from the set Y = {x1, . . . , xn}. Suppose, that at least one element of
Y got no opinion according to both preference systems R1 and R2. Moreover, let
R∗2 denote a preference system which is identical to R2 up to one element x∗i ∈ Y
which is ranked according to R∗2 but not considered by R1 and R2. Then

0 ≤ SH(R1, R2)− SH(R1, R
∗
2) <

2

n
. (8)
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The simple deduction from proposition 2 is, that this measure does not pro-
mote users who know a lot about many different products not yet known by
A. In fact, we can not prove similar property for measure SE (it does not hold
in general) however, in [8] we show the experimental evaluation based on 10
million randomly generated experiments (different parameters i.e. number of
products, fraction of missing values were considered) to analyze the distribution
of (SE(R1, R2)−SE(R1, R

∗
2)). The results of our experiment show that for mea-

sure SE , the inequality from Proposition 2 does not hold for less than 2% cases
(see fig. 1, 2, detailed description can be found in [8]).

Fig. 1. A simulation for measure SE . A boxplot for Diff(R1, R2, R
∗
2) obtained for 10

millions of random pairs of preference systems, fraction of missing ranks: q=0.5.

Therefore, as we are interested in finding users not only similar to A but who
also differ from A in a sense that they could provide an information on items
not known yet by A, we had to modify these measures to make them possess the
property of promoting those customers similar to a new user, who have a broad
knowledge on the items not seen yet by this new user. The general idea is to
modify the similarity measures by including some penalty connected with those
users whose knowledge is not sufficient. We decided to take an advantage from
the two main types of the entropies that appear in the IF-set environment. The
first one is connected with the fuzziness of given IF-set, while the second with
the hesitancy and the lack of knowledge connected with this IF-set (see i.e. [10],
[11]). We use the following definition of two-tuple entropy (see [11]):

Definition 1. Let EF , EHLK : IFS(X) → [0, 1] denote two mappings. A pair
(EF , EHLK) is said to be a two-tuple entropy if EF and EHLK satisfy the fol-
lowing conditions:

(i) EF (A) = 0 if and only if A is crisp or µA(x) = νA(x) = 0 for every x ∈ A,
(ii) EF (A) = 1 if and only if µA(x) = νA(x) = 0.5 for every x ∈ A,
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Fig. 2. A simulation for measure SE . A boxplot for Diff(R1, R2, R
∗
2) obtained for 10

millions of random pairs of preference systems, fraction of missing ranks: q=0.3.

(iii) EF (A) = EF (AC), where AC = {(x, νA(x), µA(x)) : x ∈ X} is the comple-
ment of A,

(iv) EF (A) ≤ EF (B) if µA(x) ≤ µB(x) ≤ 0.5 and νA(x) ≥ νB(x) ≥ 0.5 for
µB(x) ≤ νB(x) or if µA(x) ≥ µB(x) ≥ 0.5 and νA(x) ≤ νB(x) ≤ 0.5 for
µB(x) ≥ νB(x),

(v) EHLK(A) = 0 if and only if A ∈ FS(X),
(vi) EHLK(A) = 1 if and only if µA(x) = νA(x) = 0,

(vii) EHLK(A) = EHLK(AC),
(viii) EHLK(A) ≥ EHLK(B) if µA(x) + νA(x) ≤ µB(x) + νB(x) for every x ∈ X.

It is seen that EF is strictly related to fuzziness while EHLK is connected
with the hesitancy and the lack of knowledge. In [8], we propose to use the
following expression:

EHLK(A) =
1

n

n∑
i=1

[1− (µA(xi) + νA(xi))], (9)

and we show how to decompose it into two parts where one is connected with
lack of knowledge and would later be used as a penalty for users whose knowledge
is not rich enough:

Proposition 3. Let R̃ ∈ IFS(X) describe a preference system R with respect to
n objects from the set X = {x1, . . . , xn}. Suppose that t different ranks (1 < t ≤
n) were attributed to elements of X in such way that ki denote the number of
elements which obtained i-th rank according to R. Moreover, let m denote the
number of objects in X not ranked according to R, where m+

∑t
i=1 ki = n. Then

EHLK(R̃) = EH(R̃) + ELK(R̃), (10)
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where

EH(R̃) =
1

n

t∑
i=1

ki(ki − 1)

n− 1
, (11)

ELK(R̃) =
1

n

[
(n−m)m

n− 1
+m

]
. (12)

In proposition 12, ELK quantifies the lack of knowledge impact connected with
unavailable opinions on evaluated objects. Thus we proposed in [8] the following
form of modified SE measure, including some penalty for not sufficient knowledge
about many different products:

SpenE (R1, R2) = SE(R1, R2) · (1− ELK(R̃2)). (13)

Now, the proposed measure (13) promotes, in the process of finding users
similar to A due to their preference systems, users with broad knowledge about
many products. Such tool is quite satisfactory to be used in collaborative fil-
tering. The next important step of creating recommendation is reasoning from
multiple preference systems of several users, which are the most similar to the
new user A due to measure SpenE . The question how to aggregate different prefer-
ences about product not yet known by A is not trivial. Formally, we can express
the preferences of chosen users, say B1, . . . , Bk, represented by appropriate IF-
sets B̃1, . . . , B̃k, in the form of their membership and non-membership functions
(µB̃j

(x1), µB̃j
(x2), . . . , µB̃j

(xn)) and (νB̃j
(x1), νB̃j

(x2), . . . , νB̃j
(xn)) respectively

for j = 1, . . . , k.
Further performance of the recommender system depends strongly on the

choice of the aggregation method for these preferences and the final recommen-
dation strategy. What is more, the strategy of decision making may be very
specific for different group of users, which may affect the overall accuracy of the
system. Exemplary ”ready to use” algorithms of creating final recommendation
were mentioned in [8]. However, we also proposed in [8] the new idea of a graph-
ical tool that summarizes properties of possible recommendations and may be
used in the form of interaction with users to let them choose the recommenda-
tion which best fits their characteristic of individual decision making strategy.
It may also be helpful for the designers of fully automatic recommender sys-
tems to analyze different possible algorithms and choose the one, that is fitted
to the specificity of the group of users they consider. The idea of that graph is
to provide the user with a value of a special score function calculated for differ-
ent items together with some information on the strength (or credibility) of the
score. Exemplary results of summarizing two possible recommendations using
proposed method can be seen in fig. 3.

On the vertical axis of Figure 3 we place the aggregated values of µ and ν
functions in the form of interval valued fuzzy set, i.e. [µLagg(xi), µ

R
agg(xi)], where

µLagg(xi) = µAagg(xi) and µRagg(xi) = 1 − νAagg(xi) (since IF-sets are isomorphic
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with interval-valued fuzzy sets, see e.g., [12]), where

µA,kagg(xi) =
1∑k

j=1 I(µB̃j
(xi) ∨ νB̃j

(xi) > 0)

k∑
j=1

µB̃j
(xi), (14)

νA,kagg (xi) =
1∑k

j=1 I(µB̃j
(xi) ∨ νB̃j

(xi) > 0)

k∑
j=1

νB̃j
(xi), (15)

and I(·) denotes the indicator.
This interval can be interpreted as the aggregated degree of membership

to the set of highly preferred items. Due to the different level of knowledge of
several users, the information they provide about products they already know
may be more or less precise. The general interpretation is that the thinner is
the interval, the more experienced users (with knowledge about many different
products) rated the product and thus, the recommendation is more trustful.
Quite a different aspect is the confidence of the recommendation. Even if the
product was rated by experienced users, but only a small number of them, we can
suspect that the recommendation does not have appropriate level of confidence.
Thus, on the horizontal axis, we present the fraction of nearest neighbors that
have any knowledge about product presented in the graph (in our example 0.4
NN know product x1 and 0.8 of NN know product x2). In fig. 3, we can observe
that x2 is more confident recommendation, which is also known by users with
higher amount of knowledge than x1 (thinner interval). It is worth noticing that
the interval reduces to the single point if and only if this item is rated by all
users “similar” to our customer, it is considered on the same position by all of
them and they have full knowledge about all products in the database. On the
other hand, product x1, can still be potentially the best product in our data set
(µRagg(x1)=1 means that due to the users that know x1, none of other products is
better than it). Considering this example, the optimistic person with low aversion
to risk would probably choose product x1 (due to available knowledge), whereas
users, who need more confident recommendations, would choose x2.

In [8], we show the experimental results of evaluation of collaborative filtering
recommender system based on similarity measure (13). We analyzed 3 possible
different strategies of decision making and the simulated user interaction strategy
with usage of proposed graphical tool. The results were promising, so in this
contribution, we decided to apply this method in content based recommender
system, and compare the results with one of well performing algorithms we
proposed in [13].

4 Modeling Preferences in Content Based Recommender
Systems

We will now focus on creating recommendations in a different situation, where
some meta-data about users of a recommender systems are available. Let U,
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Fig. 3. Graphical method for supporting customer’s decision

called an instance space, denote a set of elements (users, patients etc.) charac-
terized by several attributes. Suppose that instead of classifying instances into
separate classes, we associate each instance u ∈ U with a total order of all class
labels Y = {y1, . . . , yM}. Moreover, we say that yi �u yj indicates that yi is
preferred to yj given the instance u. A total order �u can be identified with a
permutation πu of the set {1, . . . ,M}, where πu(i) is the index j of the class label
yj put on the i-th position in the order. The class of permutations of {1, . . . ,M}
will be denoted by Ω.

The main goal required while creating recommendation is to predict a rank-
ing of labels y1, . . . , yM for a new instance u, given some instances with known
rankings of labels as a learning set. In practical issues, especially in recommender
systems where the amount of available products is large, preference on instances
known from the learning set does not usually contain all labels, i.e our informa-
tion is of the form yπu(1) �u . . . �u yπu(k), where k < M .

Several methods are available in the literature but many of them are com-
putationally exhaustive in a presence of vague data. In [13], we proposed the
IF-set modification of an algorithm based on the Mallows model. The proposed
modification effected in significant improvement in performance.

Below, we highlight some important details of a mentioned algorithm.

We may assume that every instance is associated with a probability distri-
bution over Ω, i.e. for each instance u ∈ U there exists a probability distribution
P(·|u) such that, for every π ∈ Ω, P(π|u) is the probability that πu = π.

To evaluate the predictive performance of a label ranker a suitable loss func-
tion on Ω is needed, e.g. based on Kendall’s tau (see [14]).
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The Mallows model is a distance-based probability model defined by

P(π|θ, π0) =
exp(−θD(π, π0))

φ(θ)
, (16)

where the ranking π0 ∈ Ω is the location parameter (center ranking), D is a
distance measure on rankings, φ = φ(θ) is a constant normalization factor and
θ stands for a spread parameter which determines how quickly the probability
decreases with the increasing distance between π and π0.

The main idea of our modification proposed in [13] is to replace measure D
in (16) with a substitute that admits vague data.

Having any two instances u1, u2 ∈ U we may compute a correlation between
preference systems ũ1, ũ1 generated by these instances, using the generalized
Kendall’s tau, admitting incomplete preferences (see [4]):

τ̃ =
1

2M(M − 1)

M∑
i=1

M∑
j=1

[sgn(µũ1(yj)− µũ1(yi)) · sgn(µũ2(yj)− µũ2(yi))(17)

+sgn(νũ1
(yj)− νũ1

(yi)) · sgn(νũ2
(yj)− νũ2

(yi))].

For possibly incomplete preferences we get incomplete permutation π̃ = π̃u
which might be identified with the corresponding IF-set ũ. Thus for any two
instances u1, u2 ∈ U we have τ̃ = τ̃(ũ1, ũ2) = τ̃(π̃1, π̃2). Hence, using (17), we
may consider the following measure

Dτ̃ (π̃1, π̃2) =
1− τ̃(π̃1, π̃2)

2
, (18)

which seems to be useful in the generalized Mallows model (16) admitting in-
complete rankings and defined as follows

P̃(π̃|θ, π̃0) =
exp(−θDτ̃ (π̃, π̃0))

φ(θ)
. (19)

Of course, when modeling preferences by IF-sets one can also consider other
substitutes for the measure D in (16), including different distances, dissimilarity
measures or divergences (see, e.g., [6]). However, we have chosen a measure based
on the generalized Kendall’s tau because it is common to use distances utilizing
the classical Kendall’s coefficient in the Mallows model (see, e.g., [14]).

One of proposed in [13] algorithms can be described as follows:

Algorithm 1 Mallows Best Probability Algorithm (MBP)
{Input: u - new instance, U - learning set of instances, π̄ - permutations of
labels connected with instances, k - number of nearest neighbors}
1. Find k nearest neighbors of u in U .
2. For (j in 1 : M) calculate

∑
π∗∈π̄kNN(u)

P̃(ybestj |θ, π∗)
3. MBP-rank < − Sort labels according to the values obtained in step 2 (in case
of ties a label with lower index is better in the ranking).
{Output: MBP-rank}
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where

P̃(ybestj |θ, π∗) =
exp(−θD∗(ybestj , yπ

∗

j ))

φ(θ)
, (20)

where D∗ is the Euclidean distance between IF-sets given by

D∗(ybestj , yπ
∗

j ) =

√√√√1

2

n∑
i=1

((µybestj
− µπ∗(yj))2 + (νybestj

− νπ∗(yj))2). (21)

as we apply the Mallows model to express the probability corresponding to the
best label.

The performance of proposed algorithm we show in Tables 1, 2 (see. [13]) for
details).

Table 1. Comparison of label ranking algorithms for p = 30% missing labels in the
learning set.

accuracy time [s]
data set IBLR MBP MMBP IBLR MBP MMBP

glass (A) 0.781 0.784 0.788 3.504 0.26 3.7
vowel (A) 0.817 0.795 0.819 102.03 1.05 102.26
housing (B) 0.670 0.665 0.670 8.44 0.70 8.95
elevators (B) 0.622 0.617 0.624 1371.86 225.83 1583.55
wisconsin (B) 0.432 0.420 0.427 316.12 0.40 319.54
average 0.664 0.656 0.665 360.39 45.65 403.60

Table 2. Comparison of label ranking algorithms for p = 50% missing labels in the
learning set.

accuracy time [s]
data set IBLR MBP MMBP IBLR MBP MMBP

glass (A) 0.688 0.685 0.687 5.12 0.29 5.42
vowel (A) 0.725 0.700 0.715 119.84 0.95 126.04
housing (B) 0.579 0.570 0.573 12.53 0.7 13.12
elevators (B) 0.540 0.530 0.535 2326.23 272.67 2598.56
wisconsin (B) 0.381 0.351 0.363 502.22 0.37 508.74
average 0.583 0.567 0.575 593.19 55.00 650.38

Results given in Table 1 and Table 2 show that algorithms MBP, MMBP and
IBLR have similar accuracy on our experimental sets. More precisely, MBP is
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usually slightly worse than the two other algorithms, but it is significantly faster
which is crucial due to applications in recommender systems.

4.1 Fitting decision strategy to the user

One may notice that the decision making strategy in mentioned MBP algorithm
is a strategy that we choose in the process of designing the algorithm. It gives
satisfactory overall results, but the rule how to choose final recommendation is
assumed without any survey about the users of a recommender system.

In [8], we considered three common strategies of decision making based on
proposed graphical tool:

– Strategy 1: choose the product with µaggR not lower than 0.5 with maximal
pnn and minimal difference between µaggR and µaggL - this strategy would fit
users with the strongest aversion to risk. Taking into consideration high-
est pnn and lowest size of the interval [µaggL , µaggR ] is equivalent to base the
recommendation on decision of the largest possible number of the most ex-
perienced users (with the highest level of knowledge about many different
products).

– Strategy 2: choose the product with maximal µaggR - is a kind of the risky,
optimistic strategy, that takes into consideration only the highest possible
value of the µ function for the unknown product.

– Strategy 3: choose the product with maximal µaggL - is a kind of the pes-
simistic strategy, that maximizes only the lowest possible value of the µ
function for the unknown product.

We will now adapt the proposed graphical tool for valuating the possible
recommendations. We will show what improvement can be obtained by using
different strategies of creating recommendation and we will compare the results
with MBP algorithm.

To perform our experiments, we use semi-synthetic label ranking datasets
downloaded from www.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/
software/label-ranking-datasets.htm. Below, we extend our experimental
evaluation, presented in [8], to analyze the behavior of discussed methodology
(see [8] for more detailed description). This time, as we consider content-based
recommendations, we combine preference systems and vector of attributes from
wisconsin and vowel datasets randomly (assuming that labels and attributes
from wisconsin dataset are always after labels and attributes from vowel dataset)
to obtain dataset containing 528 instances with 37 attributes, where each in-
stance is connected with ranking of 27 labels. We then generate the missing
ranks (every element in each ranking is removed with probability 0.5). To an-
alyze the performance and behavior of proposed method, we use leave-one-out
cross-validation. For every observation A, we first find it’s 5 nearest neighbors
using all 37 attributes. After finding the set of nearest neighbors, we specify the
IF-set representations of their preference systems and the aggregated values of µ
and ν functions for every label using the formulas (14,15) are calculated. Having
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all statistics to use proposed graphical method and perform strategies (1−3), we
begin our experiment, taking into consideration also the best recommendation
from MBP algorithm. The accuracy is calculated using the following formula:

accA(yi) = 1− 1

2

√
(µ∗A(yi)− µaggL (yi))2 + (ν∗A(yi)− (1− µaggR (yi)))2, (22)

where µ∗A(yi) and ν∗A(yi) are the values obtained by representing the prefer-
ence system for a given user A in a form of IF-set after inputing the true rank
for label yi (from the learning set before the process of random removing the
ranks) into his preference system.

Results are presented in Table 3. The simulation of the user interaction is
obtained by choosing the strategy with the highest accuracy for every user and
compare the results with the case when the recommendation strategy is fixed for
every user. As MBP is rather too complicated strategy to be adapted individually
by the user, it is not included in ”simulated user strategy”.

Table 3. Values of averaged accuracy of recommendations for different recommenda-
tion strategies. ”Acc simulated user” means the averaged accuracy of recommendation
based on the best possible strategy for each user.

acc str1 acc str2 acc str3 acc MBP acc simulated user
0.9133 0.8461 0.9056 0.9144 0.9343

We may notice that the simulation of user-interactive strategy gives the best
results.

The results of analogical experiment in collaborative filtering context can be
seen in Table 4 (see [8] for details).

Table 4. Values of averaged accuracy of recommendations for different recommenda-
tion strategies. ”Acc simulated user” means the averaged accuracy of recommendation
based on the best possible strategy for each user.

acc str1 acc str2 acc str3 acc simulated user
0.9047 0.8884 0.8967 0.9140

An interesting observation is the difference between accuracy for the same
strategies with and without the information brought from the meta-data con-
nected with our instances. The difference in the accuracy between the worst and
the best strategy increases when we use the meta-data.
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5 Conclusions and Future Work

In this paper we discuss several IFset based methods of dealing with vague pref-
erences in different types of recommender systems. We show how the graphical
tool of summarizing recommendations proposed in [8] can be applied to improve
accuracy of content based recommender systems.

Some questions remain open and deserve future research. In particular, a
natural desired extension of the proposed graphical method for comparing rec-
ommendations would be its special implementation in the form of the automatic
user-adaptive algorithm. Such algorithm would learn user’s decision-making strat-
egy in order to propose him the appropriate recommendations automatically,
even without his influence. We can imagine at least two types of data that can
be used to train such algorithm. In the first case, the algorithm would learn
the behavior of the user from his historical choices, e.g. from the proposals of
selected recommendation presented in a graphical form. The second approach
requires some meta-data connected with the user, like results of a psychological
survey concerning his behavior in decision-making. Basing on such data we could
deduce whether the user prefers something risky but with possible highest rates
or a medium rated but well checked product.

Concerning the content based recommender systems, although the proposed
MBP algorithm seems to be a promising candidate for creating recommendations
especially in the presence of large number of labeled items, one may consider
application of the proposed graphical tool to design global predictive models that
would be more computationally efficient in the prediction step. The proposed
method based on finding nearest neighbors is rather exhaustive when we have
to deal with large databases of users. In this case consideration of i.e. GLM
based models for estimating borders of intervals presented in proposed graphical
method, seem to be desired extension of proposed algorithms.
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Abstract. In this paper a construction of a similarity measure between
groups of rankings, based on a Bipolar OWA (BOWA) function is dis-
cussed. The measure possesses some interesting properties that make it
useful in cluster analysis performed as a part of collaborative filtering
process. An extended data representation model for consumer prefer-
ences and objects of their preferences is assumed. Practical issues of
conducting and evaluating the clustering procedure are discussed.
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1 Introduction

The most common web-based recommender systems predict what movies, books
or other goods a user would prefer, based on the historical ratings, views or
purchases of the user [1, 2]. Explicit user feedback once given continues to be
useful. The most popular setting in which preferences are represented in such
systems is a matrix (sometimes called a utility matrix ) with rows corresponding
to users, columns corresponding to items and cells containing values of ratings
given to items by the users. In [3] a more complicated setting of representing
user preferences was proposed. It is especially suited for recommending services,
e.g. vacation trips, cultural events, conferences, for which no explicit feedback
exists. The setting has a form of a matrix where the entries of the cells for each
user-attribute pair contain rankings. Each ranking expresses user preference for
items belonging to the domain of a given attribute.

Collaborative filtering approach is the most common technique successfully
applied in recommender systems [4, 5]. It creates item recommendations based
on similarity measures between users and/or items. An application of cluster
analysis and grouping the users based on their similarity was considered a natural
and interesting direction of inference about preferences.

In order to apply this approach for the assumed data representation, a sim-
ilarity measure between groups of rankings [3] coming from a pair of users was



94 Hanna Łącka

defined. The measure is based on a function that is a member of the family of
BOWA operators (Bipolar Ordered Weighted Averaging function) proposed in
[6], which are used to aggregate bipolar data.

In this paper a work on the similarity measure between groups of rankings is
summarized and the application of the measure in cluster analysis is proposed.
The clustering is assumed to be a part of a collaborative filtering process whose
purpose is to detect natural similarity groups of consumers, as opposed to a
possible segmentation approach [7], and to generate object recommendations for
the consumers.

The paper is organized as follows. An introductory example explaining the
difference between the classical situation considered in recommender systems and
the suggested setting is given in Section 2. In Section 3 a data representation
model for consumers is recalled. We also propose a data representation for objects
of consumer preferences, based on groups of vectors and referring to consumer
data representation model. A notion of a history of choices of a consumer is
introduced. Section 4 recalls definition of the chosen similarity measure between
groups of rankings and of the family of operators the measure is based on. In
Section 5 we propose to apply the defined similarity measure in cluster analysis
and describe example choice of existing methods to conduct and evaluate it.

2 Introductory example

Let us consider a travel agency, that gathers a history of vacation trips of its
clients. For every client a number of times he or she attended a certain trip is
known.

The agency stores data about trips in the following way. Every trip is de-
scribed by the same set of attributes. For each separate attribute the availability
of its all possible variants (which depend on a domain of the attribute) is marked.
An exemplary output of trips (or trip types) data set is given in Table 1, where
1 means a certain variant is available and 0 it is not.

Data about clients are stored in a form of rankings of choices made by the
clients. For each attribute of a trip, all available variants concerning this aspect
of a trip have the ranks assigned, according to historical preferences of the client.
In other words, for each client a ranking of variants of a given attribute from
the most preferred to the least preferred variant is obtained. Table 2 presents
an exemplary output of the clients data set, where numbers indicate the ranks
assigned.

Such data sets as shown in Table 1 and Table 2 are collected because the
agency plans to prepare new trip offers for each client. To maximize the possi-
bility of accepting a new offer it should be prepared in a way that guarantees
client’s satisfaction when chosen. To achieve this, the agency plans to create
recommendations based on similarity between clients and/or trip offers.
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Table 1. Exemplary data set of trips.

Accommodation Means of transport Activities

Trip T tent - 0
guesthouse - 1
hotel - 0

car - 1
bus - 0
train - 1
airplane - 0

sunbathing - 1
sightseeing - 0

Trip U tent - 1
guesthouse - 0
hotel - 0

car - 1
bus - 0
train - 0
airplane - 1

sunbathing - 1
sightseeing - 1

. . . . . . . . . . . .

Table 2. Exemplary data set of clients’ preferences.

Accommodation Means of transport Activities

Client A tent - 2
guesthouse - 1
hotel - 3

car - 1
bus - 4
train - 2
airplane - 3

sunbathing - 1
sightseeing - 2

Client B tent - 3
guesthouse - 2
hotel - 1

car - 3
bus - 4
train - 1
airplane - 2

sunbathing - 2
sightseeing - 1

. . . . . . . . . . . .

3 Data representation

Let Y be a finite set of attributes of size n. Moreover, assume that Uj is a domain
of the attribute Yj ∈ Y which consists of lj variants, i.e. Uj is a finite set of size
lj , where j = 1, . . . n.

Let X denote a set of consumers. For each attribute consumer preferences
are expressed with respect to all available variants of that attribute. Hence, for
any consumer A ∈ X we get n rankings corresponding to successive attributes,
so the observation related to A might be perceived as a vector

RA = [RA1, RA2, . . . , RAn], (1)

where RAj is a ranking of variants belonging to the domain of the j-th attribute.
Consider now a ranking RAj . Since it reflects the consumer’s preferences on

variants belonging to the domain Uj of the attribute Yj ∈ Y, it is also a vector.
Namely,

RAj = (r
(1)
Aj , r

(2)
Aj , . . . , r

(lj)
Aj ), (2)
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where r(k)Aj , k = 1, . . . , lj is a rank assigned to k-th variant belonging to Uj and
where lj stands for the size of the domain Uj .

Next, let Z be a set of objects of preference (products, offers, events etc.).
Each object T ∈ Z is characterized by available variants of the attributes Y
already considered by consumers. Hence, object T ∈ Z is described by a vector

VT = [VT1, VT2 . . . , VTn] (3)

where VTj is an lj-element vector indicating available variants, i.e.

VTj = (v
(1)
Tj , v

(2)
Tj , . . . , v

(lj)
Tj ), (4)

where v(k)Tj ∈ {0, 1}, k = 1, . . . , lj , and v
(k)
Tj = 1 denotes that the k-th variant

in Uj is available (in offer T ), while p(k)Aj = 0 means that it is not available. In
general there is no restriction on the number of simultaneously available variants.

Given a finite set of considered objects {T (1), T (2), . . . , T (t)} ∈ Z and a con-
sumer A ∈ X , let

HA = [hA1, hA2, . . . , hAt] (5)

denote a consumer A’s history of choices, where hAi ∈ {0, 1, . . . , t} for i =
1, . . . , k, and hAi = 0 means the i-th object from the set {T (1), T (2), . . . , T (t)}
was never chosen by A, while hAi ∈ {1, . . . , t} denotes a rank assigned to the
i-th object. For the most often chosen object we obtain hA. = 1, the second most
often chosen object has rank 2, and so on till the least often chosen object.

We assume the client A’s representation (1) is linked to the history of choices
HA in the following way. Observation RA = [RA1, RA2 . . . , RAn] is generated
on the basis of: a history of choices HA and an additional information about
exact number of times each object from the history was chosen. For a given j-th
attribute we obtain a ranking RAj by summing up the number of times each
of the lj variants, if available, was chosen in the history and assigning ranks to
each of the lj obtained sums in the non-increasing order.

Example 1. Let {T,U, V } be a considered set of objects of preference, such that

VT = [(0, 1, 0), (1, 0, 1, 0), (1, 0)]

VU = [(1, 0, 0), (1, 0, 0, 1), (1, 1)]

VV = [(1, 0, 0), (1, 1, 1, 1), (0, 1)].

Given a client A, his or her history of choices HA = [1, 2, 0] and additional
information that the first object was chosen 13 times and the second object 4
times by the client A, we obtain the following vector of sums for each variant of
each attribute:

[(1 · 4, 1 · 13, 0), (1 · 4 + 1 · 13, 0, 1 · 13, 1 · 4), (1 · 13 + 1 · 4, 1 · 4)] =
= [(4, 13, 0), (17, 0, 13, 4), (17, 4)].
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After assigning ranks to the sums in the non-increasing order, we obtain client
A’s representation:

RA = [(2, 1, 3), (1, 4, 2, 3), (1, 2)].

�

4 Measure of association between groups of rankings

In order to group the consumers based on their similarity, for the assumed con-
sumer data representation (1), a measure of association between two groups of
rankings was searched for. A set of requirements which a measure should satisfy
was specified [3] and the form of the desired measure between two groups of
rankings corresponding to consumers A and B, A,B ∈ X , was stated as

S(A,B) = F (s1AB , s
2
AB , . . . , s

n
AB), (6)

where (s1AB , s
2
AB , . . . , s

n
AB) is a vector of pairwise correlations obtained for all

attributes under study for two consumers A,B ∈ X , i.e. sjAB = s(RAj , RBj),
j = 1, . . . , n, s denotes any pairwise correlation measure between two rankings,
taking values in [−1, 1] (e.g. Kendall’s τ or Spearman’s rS [8]) and F : [−1, 1]n →
[−1, 1] is a suitable function.

Since the goal of F is to aggregate several correlations to a single value,
one may expect that it should be an appropriate aggregation function. The
preservation of bounds property of any aggregation function coincides with the
specified requirement that the measure should take its maximal (minimal) value
when all rankings are pairwise perfectly concordant (discordant). One of the
other requirements was to reward higher correlations, hence an OWA operator
[9] might seem a good choice. However, the reward was postulated to be given
regardless of the correlation signs. Hence, F cannot be monotone on the whole
interval [−1, 1] and cannot fulfill the monotonicity condition (see, e.g., [10–12])
of any aggregation function.

A new family of semi-aggregation operators was therefore proposed [6]. It
is a generalization of OWA operators for the case of bipolar data and, most
importantly, was shown to be monotone for absolute values of arguments while
still keeping track of signs.

Definition 1. Let w = [w1, . . . , wn] be a vector of weights such that wj ≥ 0
for j = 1, . . . , n and

∑n
j=1 wj = 1. Suppose that x1, . . . , xn are realizations

of the continuous random variable defined on the interval [−1, 1]. A function
F : [−1, 1]n → [−1, 1] defined as

F (x1, . . . , xn) =

n∑
j=1

wj · x∗(j) (7)

is called the Bipolar OWA function (BOWA), where x∗(j) denotes the j-th largest
absolute value of element in the collection of aggregated objects x1, . . . , xn mul-
tiplied by the original sign of that element.
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Alternative notation to express BOWA operator is

F (x1, . . . , xn) = 〈w,x∗ ↘B〉 , (8)

where 〈·, ·〉 is the scalar product of vectors and the symbol ↘B indicates a non-
increasing ordering (proposed to be called bipolar) of elements obtained for their
absolute values and thus ignoring their signs.

The BOWA operator definition in the presence of ties in the bipolar ordering
of arguments was separately defined in [6]. Arguments having the same absolute
values are given identical weights, which are computed as the average of weights
that would be gathered if the arguments had not been tied.

The basic BOWA operator properties [3] include idempotence, symmetry
and homogeneity. Moreover, each BOWA function for absolute values of its ar-
guments is an OWA operator. Similarly as OWA functions, BOWA operators do
not have neutral or absorbing elements, except for the special cases. They are
however not shift-invariant. BOWA operator with adequately chosen weights,
such that higher correlations are rewarded whatever are their signs, is a suitable
function F that satisfies all postulates required by the measure of association
(6) searched for. An example of such vector of weights was suggested in [3] and
is also recalled below.

Example 2. Consider two consumers A and B. Assume that the pairise correla-
tion between their preferences for each of the three attributes under study was
calculated using Spearman’s coefficient. As a result we received the following
three numbers: s1AB = 0.5, s2AB = 0.4 and s3AB = −1.

To aggregate these three coefficients the following operator FLG : [−1, 1]n →
[−1, 1] was suggested in [3]

FLG(xi, . . . , xn) =
2

n(n+ 1)

n∑
j=1

r(|xj |) · xj , (9)

where r : [0, 1]→ R+ is a function such that

r(z) =
1

2
+

n∑
i=1

c(z − |xi|) (10)

and where c is defined as

c(u) =


0 if u < 0
1
2 if u = 0

1 if u > 0.

(11)

The suggested operator is a member of a family of BOWA operators (7). Let
us consider given correlation coefficients as a vector x = [0.5, 0.4,−1]. Hence we
get a vector of argument values x∗ ↘B= [−1, 0.5, 0.4] in the bipolar order. Using
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ranks given by (10), we may compute a vector of weights w = [0.5, 0.(3), 0.1(6)]
and therefore, by (8) we get

F (0.5, 0.4,−1) = 0.5 · (−1) + 0.(3) · 0.5 + 0.1(6) · 0.4 = −0.2(6).

�

5 Using BOWA-based similarity measure in cluster
analysis for collaborative filtering

The constructed similarity measure (6) between a pair of consumers based on
BOWA operator, allows us to conduct cluster analysis for a set of consumers
represented as in (1). We assume the goal of such clustering proccess is to find
natural similarity groups among consumers and characterize the groups.

Consider a finite set of consumers X ⊂ X and the K-medoids [7] as a cluster
analysis method to be conducted on X. K-medoids is a combinatorial cluster
analysis [7], a generalization of a popular K-means algorithm for observations
with arbitrary attributes. It admits arbitrary dissimilarity measure instead of a
squared Euclidean distance. The center of each cluster, the medoid, is the cluster
member that minimizes a total dissimilarity to all other members of the cluster.
The BOWA based S similarity measure (6) can be easily adopted to be used as
a dissimilarity S′ in K-medoids method, i.e. S′ = −S.

Dissimilarity S′ can then also be used for several distance-based clustering
quality measures, as Silhouette coefficient [13], Gamma index [14], C-index [15]
or Caliński and Harabasz index generalised for dissimilairites [16]. Another pro-
posed way to assess clustering quality is to measure the averaged agreement
among consumers belonging to the same cluster in relation to the agreement
among medoids. To compute an overall agreement of a group of consumers we
can use the analogy to how the BOWA based similarity measure between two
groups of rankings is constructed (6). First, we measure the agreement for each
attribute separately, i.e. concordance of a set of rankings, using e.g. the Kendall’s
coefficient of concordance [8] which ranges between 0 (no agreement) to 1 (per-
fect agreement). Then using OWA operator with a proper weight vector that
rewards higher correlations, e.g. obtained by (10), we aggregate the coefficients
to obtain single value agreement indicator.

Now, consider a certain resulting cluster and assume that the history of object
choices (5) of each cluster member is known. Let {T (1), T (2), . . . , T (t)} be a set of
all considered objects that the histories are based on. The following procedures
of obtaining a meaningful cluster description are suggested:

P1. Picking or creating a representative consumer. Obvious way of repre-
senting a cluster is to pick the consumer that serves as the medoid. However,
an equivalent of a centroid [7] known from the K-means procedure could also
be computed, i.e. the averaged member of the cluster having the form of a
vector (1), such that its each element is obtained as a result of aggregating
corresponding elements of vectors representing all cluster members.
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P2. Creating a representative object. A single object T (rep) ∈ Z of the
form VT (rep) = [V

T
(rep)
1

, V
T

(rep)
2

. . . , V
T

(rep)
n

] is created such that for the j-
th attribute each element of the vector V

T
(rep)
j

is obtained as a result of

aggregating corresponding elements of vectors V
T

(i)
j

, i = 1, . . . , t, if the i-th

object is among the ones most often chosen by the cluster members.

P3. Creating a representative history of object choices. A vector having
the form of the history of choices (5) is created, such that its each element
is obtained as a result of aggregating corresponding elements of vectors rep-
resenting histories of choices of all cluster members.

Keeping in mind the introductory example discussed in Section 2, we observe
that cluster analysis can be especially beneficial also for recommendation cre-
ation purpose, for the assumed data representation model.

Firstly, we notice that history of consumer choices (5) can serve as a ground
truth for algorithms that learn to predict a preferred order of a given set of
objects for a given consumer, i.e. object ranking [17] or preference-based [4]
algorithms. In practice, histories of choices can vary a lot between consumers
regarding the number and the types of objects chosen. Notice that it applies
even to very similar consumers (where similarity is understood as defined in
Section 4). Big differences in the types of objects chosen result in sparse history
vectors. Here, the cluster analysis can be helpful in dealing with the sparsity.
Any consumer A to be used in the learning or testing phase of the object ranking
procedure can be replaced with his or her cluster’s representative consumer (see
P1.). Ground truth history of choices of the cluster’s representant is enriched
with the history of A, reducing the sparsity problem.

On the other hand, the fact that a given consumer is assigned to a certain
cluster, can be used as additional information (a feature in the input vector)
about the consumer, possibly improving the prediction quality of object ranking
procedure.

6 Conclusions

In this paper an extended data representation model of consumer preferences
and objects of their preferences was proposed. A construction of the similarity
measure between groups of rankings coming from a pair of consumers, based on a
family of semi-aggregation BOWA operators, was summarized. It was shown how
the measure can be applied in cluster analysis performed as a part of collabora-
tive filtering process and what are the motivations behind it. Practical issues of
conducting and evaluating the clustering process were discussed. Further work
assumes experimental verification of the proposed consumer clustering proce-
dure, including the defined similarity measure, performed on real and generated
data.
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Abstract. In this paper a model for the dynamics of the Polish Power
Exchange electricity spot prices is proposed. The model describes most
important quantitative features of evolution of the price index which are
characteristic to the Polish market.
The dynamics of the electricity spot prices is governed by a mean-
reverting jump-diffusion stochastic process with mixed-exponentially dis-
tributed jumps. Estimation of the model’s parameters is based on his-
torical data. The model may be precisely calibrated to quoted forward
contracts, making use of the analytical formula for a forward price.
In the paper valuation of plain vanilla options on the electricity spot
price via the Monte Carlo method is also presented.

1 Introduction

The establishment of the Polish Power Exchange (POLPX) was a result of an
implementation of the new law in Poland in April 1997, whose one of the most im-
portant assumptions was to liberalize the Polish energy market. At that moment
the process of restructuring the energy sector was conducted in the majority of
European countries. The main purposes behind the reforms were to disassociate
electricity, as a tradable commodity, from its transmission services and to estab-
lish a market for electricity generators, energy suppliers, companies involved in
energy trading and industry clients.

The POLPX began to operate in December 1999. Within six months the
electricty spot market started to run. In this way, bilateral contracts gained a
benchmark pricing index. The 2000s decade is a period of a very fast develop-
ment of the POLPX: a property rights market, a register of certificates of origin
for the electrical power generated from renewable sources and produced in co-
generation, a spot market for CO2 emission certificates and finally an electrical
power derivatives market were launched.

The trading volume on all electricity markets on the POLPX in 2014 was
equal to 186.8 TWh which is 119.4% of the energy generation and 117.7% of
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energy consumption in Poland in this year. Currently, there are 66 members of
the electricity spot market.

Econometrical patterns, which are typical for most of electricity spot prices
time series, are present also while analysing data coming from the POLPX’s in-
dex. These include: daily, weekly, yearly seasonality, abrupt, usually unexpected
jumps and mean-reversion - when the prices are in a spike regime and the ex-
traordinary market situation (caused e.g. by a failure of a transmission network,
outage of power plants, a sudden decrease or increase in temperature, low levels
of water or droughts, changing possibilities of exploitation of renewable energy
sources) finishes, the prices immediately recur to the former, normal level.

In the paper the dynamics of the spot electrical energy prices is modelled by
a continuous-time stochastic process which takes into consideration the afore-
mentioned features of prices, i.e. by a mean-reverting jump-diffusion with mixed-
exponential jump size distribution. Our model belongs to the class of one-factor
models which are characterized by their good matching to data, existence, in
many cases, of analytical solutions to various considered problems (e.g. formulas
for forward prices) and existence of numerous approximation methods (e.g. for
pricing options, etc.). The basic, initial model was introduced by [1] in which
the authors decomposed the signal to a seasonality and a mean-reverting to zero
diffusion process. However, the authors did not take the possibility of jumps in
prices into account.

In [2] a mean-reverting jump-diffusion model with normally distributed jumps
was introduced. There is a possibility of deriving an analytical formula for a
forward price. Unfortunately, the distribution of jumps on the POLPX’s time
series of spot electricity prices is not unimodal. What is more, the authors did
not explain how to assure that after filtering the jumps from the series, the
returns have normal distribution. Another reason for which the model cannot
be applied to the Polish market is that the subject of calibration of the model
to quoted on the market forward contracts, using the analytical formulas for the
forward price, was not raised. Other authors in [3] also noticed that the usage
of the Normal distribution of spikes has an effect of overestimation of skewness
and kurtosis.

A very interesting approach was presented in a threshold model [4] where
the mean-reverting diffusion was combined with a time-inhomogeneous Poisson
process of a truncated exponential distribution of jumps. Moreover, to allow for
downward, reverting to the mean jumps, the authors introduced a characteristic
function indicating the sign of a jump which depends on a current value of a
price. The proposed switching threshold is a constant positive spread over a
seasonality.

Notwithstanding, the model has some drawbacks as well. There is no pos-
sibility to obtain the analytical formula for a forward price. Additionally, [3]
critisizes the choice of the truncated exponential distrbution due to the fact that
it disallows for big jumps exceeding the fixed threshold. There is also noted that
two consecutive jumps of the same sign are impossible to occur and after esti-
mating the model’s parameters, the mean-reversion’s parameter turned out to
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be higher than expected for a base signal and smaller than required to dampen
a spike.

Another interesting subclass of one-factor models are regime-switching mod-
els. Markov models are very popular nowadays and also in the field of electrical
energy prices modelling they are widely applicable. The reason is that one can
define separate forms of dynamics for all substantially different ranges of prices
values, usually there are three of them: two spike regimes when the prices achieve
anomalous values after the upward and downward jumps, and a normal, base
regime. There is also a transition matrix which links the regimes by indicating
how much the transition from one state to another is probable. For details, see
[5, ?,?].

An alternative to all above-mentioned approaches may be a model in which
a diffusion generated by a Wiener process is superseded by very frequent and
small jumps (representing typical, daily movements of prices) generated by a
Levy process of infinite activity. The Levy process is also responsible for big
jumps in prices (substitution for the Poisson process). The model was described
in [8].

In Section 2 the dynamics of our custom-made model for the Polish market
is enunciated. The rest of the paper is organised as follows. Section 3 familiarizes
the reader with historical data chosen for analysis. In Section 4 the method of
adjusting seasonality to the historical time series is written up in details and
also one becomes acquainted with the algorithm of detection of spikes in prices.
The course of a process of the parameters estimation is comprised in Sections 5
and 6. In Section 7 the discretization of the continuous-time dynamics, as well as
the comparison of the simulated this way trajectories with the historical series
(tests for a goodness of fit) are performed. Section 8 demonstrates the form of
the analytical forward price and introduces the notions of the market prices of
risks. The next paragraph includes the results of option pricing. The last section
concludes.

2 The model of the Polish Power Exchange spot prices

Let us now describe the model of the spot prices which reflects the distinctive fea-
tures of the Polish energy market. The dynamics is governed by a mean-reverting
jump diffusion process with the jump size distribution, the idea of which is bor-
rowed from [9]. In that paper asset (not commodity) prices were considered, but
inasmuch as the distribution of returns has fatter tails than the normal distribu-
tion, the authors decided to add a compound Poisson process component, jumps
of which are sampled from the mixed-exponential distribution. This distribution
can approximate any distribution with respect to weak convergence as closely
as possible and this fact was an inspiration to use this jump distribution in our
model. Existence of jumps in case of electricity spot prices trajectories is def-
initely more pronounced than in case of any other market’s prices. Therefore,
flexibility in fitting a theoretically described distribution to a dataset of jumps
is an added value.
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A relative simplicity of the model’s formulation results in capability of de-
riving the closed-form forward price. This in turn enables to calibrate the model
to the quoted forward contracts in a very precise way.

We start with the decomposition of the spot price process St:

St = exp(g(t) +Xt), (1)

dXt = −αXtdt+ σdWt + dJt, (2)

where α and σ are constants, (Wt)t∈T is a Wiener process, (Jt)t∈T is a compound
Poisson process of the form

Jt =

Nt∑
i=1

Zi, t ∈ T ,

with constant intensity λ, Zi are i.i.d. jump magnitudes of translated mixed-
exponential distribution, i.e. with density

f(z) = qd

m∑
i=1

qiξie
ξi(z−md)1{z<md} + pu

n∑
j=1

pjηje
−ηj(z−mu)1{z>mu}, (3)

where

qd, pu ≥ 0, qd + pu = 1, qi, pj ∈ (−∞,∞),

m∑
i=1

qi =

n∑
j=1

pj = 1, ξi > 0, ηj > 1.

qd and pu are the probabilities of negative and positive jumps, respectively.
md < 0 is a minimal (with respect to the absolute value) value of negative
jumps, mu > 0 is a minimal value of positive jumps. A necessary condition for
f(z) to be a density function is

q1, p1 > 0,

m∑
i=1

qiξi ≥ 0,

n∑
j=1

pjηj ≥ 0.

One of possible sufficient conditions is

k∑
i=1

qiξi ≥ 0,

l∑
j=1

pjηj ≥ 0

for all k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}. A special case of the mixed-exponential
distribution is a hyperexponential distribution, when all parameters qi and pj
are nonnegative.

The separation from zero of the support of the density function is caused
by the fact that either positive or negative jumps are extreme events, therefore
highly greater than zero with respect to absolute value.
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Using the Ito lemma, one obtains that St follows the stochastic differential
equation

dSt = α(ρ(t)− lnSt)Stdt+ σStdWt + St(e
Z − 1)dNt, (4)

where

ρ(t) =
1

α

(
dg(t)

dt
+

1

2
σ2

)
+ g(t).

3 Historical data

Data chosen for estimation of the model’s parameters comes from the POLPX’s
IRDN spot index and covers the period of October 2011 – September 2015 (1443
historical prices). It is important to note here that by a spot price we mean a

2012 2013 2014 2015
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Fig. 1. Spot prices in PLN/MWh

weighted (by volume) average price of daily transactions – a standard day-ahead
reference index for contracts with delivery of energy during the whole upcoming
day.

At first sight one can state that prices undergo some yearly and weekly (prices
on Sundays are decidedly smaller than on other days) seasonal movements and
that from time to time a spike occurs.

4 Seasonality matching and filtering of spikes

In this paper an original, robust method of deseasonalisation is proposed. Before
all, a very important aspect to consider is that after the logarithm transform and
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deseasonalisation of prices (see eq. (1)) combined with the filtrating of jumps,
the remaining residue is modelled by the zero-mean-reverting diffusion process
which has normally distributed increases. It means that the way of seasonality
matching and filtering of spikes must not on any account be arbitrary. Our idea
is to perform spikes filtering so as to maximize a p-value of the appropriate
statistical test for normality of the aforementioned increases.

The deseasonalisation itself is divided into several stages.

4.1 Downward spikes appearing on holidays

The Polish market has an attribute that if a day is a national holiday, then
a negative spike takes place. These spikes are removed from the series as a
first part of deseasonalisation. Every spike’s value is replaced with a mean of
5 preceding and 5 following prices. There are 12 such deterministic downward
spikes each year.

4.2 Matching of weekly and yearly oscillations

The weekly seasonality is computed as means of logarithms of prices of all days
within a week. Afterwards, these values are subtracted from the log-index, but
days of the holidays are excluded from this procedure. The yearly fluctuations
are found by adjusting, by a nonlinear least-squares method, a one-year periodic,
sinusoidal function of the form

a+ bt+

3∑
k=1

ck sin

(
2kπt

365

)
+ dk cos

(
2kπt

365

)
.

The fitted this way function is shown in Figure 2.

4.3 Spikes filtering

Filtering of spikes is performed by an iterative procedure: in the first step all
jumps which absolute value exceeds some predefined threshold, for instance three
times the standard deviation of the deseasonalised log-returns, are removed from
the series. In the next step the same action is made, but this time the standard
deviation is calculated basing on the thinned series of returns. New jumps are
filtered and deleted and the process continues until in some iteration no jumps
are found.

The most important aspect of this method is to fix the threshold so as to
maximize the p-value of the Anderson-Darling normality test for the deseason-
alised, and with deleted jumps, log-returns – the assumptions of the model must
be fulfilled. For our data the threshold turned out to be 2.45s, where s is the
standard deviation of the series obtained in each step of the described procedure.
The maximized p-value is equal to 0.113. There is no evidence to reject the null
hypothesis of the log-returns normality at the 10% significance level. A similar
idea, referring to the shape of a seasonality function, was applied in [10].



Modelling Spot Prices on the Polish Power Exchange 109

2012 2013 2014 2015
4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

Fig. 2. Annual sinusoidal function fitted to the partially deseasonalised log-price series

The choice of the Anderson-Darling normality test is dictated by its one of
the best capabilities of detecting most departures from normality, cf. [11].

After filtering of spikes, their values in the series are replaced by a mean of
5 preceding and 5 following prices.

4.4 Making seasonality independent from the spikes occurrences

If the seasonality was matched basing upon the raw historical data, then this
estimation would be biased by the presence of jumps. To counteract this problem,
we propose the following procedure:

1. logarithmize the input series of prices and remove holidays downward spikes
(cf. Subsection 4.1),

2. eliminate the rest part of seasonality, i.e. weekly and yearly oscillations (cf.
Subsection 4.2),

3. filter out and remove spikes (cf. Subsection 4.3),
4. add the seasonality fitted in point 2. to the deseasonalised and bereft of

spikes series and then once again perform the (this time robust to spikes)
deseasonalisation described in point 2.

Obtained this way seasonality is not influenced by the magnitudes of jumps
in prices and thus should be used as a part of the formula (1) to achieve the
historical realization of the process (2). A similar technique was adapted in [12].

It is worth to see this aggregate form of the seasonality applied for the upcom-
ing years, see Figure 3. The seasonality in some magnification, around Christmas,
is shown in Figure 4.



110 Michał Pawłowski, Piotr Nowak

2016 2017 2018

4.8

4.9

5.0

5.1

5.2

5.3

Fig. 3. The overall seasonality function in logarithmic scale in PLN/MWh

5 Estimation of the driving process’s parameters

After the deseasonalisation and removal of spikes from the log-series, one may
proceed to estimation of the jump-diffusion’s parameters. The volatility σ from
the equation (2) is estimated as a mean of the rolling standard deviation of the
time-scaled increments Pi−Pi−1√

ti−ti−1
(see [13], formula 3.10):

σ(tk) =

√√√√√ 1

m− 1

k∑
i=k−m+1

 Pi+1 − Pi√
ti+1 − ti

− 1

m

k∑
j=k−m+1

Pj+1 − Pj√
tj+1 − tj

2

,

where P is the deseasonalised and devoid of spikes log-price index, m = 30,
M = 1305 (after removing of jumps there are 1305 log-returns), k ∈ {m, . . . ,M}.
For all i ∈ {1, . . . , 1306} ti+1 − ti = 1

365 . The estimated value σ = 1.14.
Determination of the mean-reversion’s velocity α is based on the deseason-

alised log-prices, but in the presence of spikes. One has to regress the deseason-
alised log-prices series bereft of its first element versus the deseasonalised log-
prices series without its last element, which is a direct cause of the discretized
form (see details in Subsection 7.1) of the equation (2):

Xtk = e−α∆tXtk−1
+ ρtk ,

where ρtk is the sum of integrals of the Wiener process and the compound Poisson
process between times tk−1 and tk. The value of the regression coefficient e−α∆t

is significantly different from zero – the speed of mean-reversion achieved this
way equals α = 0.3.
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Fig. 4. Seasonality function around Christmas 2016

The results of the augmented Dickey-Fuller test applied for the deseasonalised
log-prices indicate that there is no unit root in our time series data – the mean-
reversion is indeed present.

6 Evaluation of the jump-size distribution’s parameters

To filter jumps for the purpose of the jump-size distribution’s parameters estima-
tion, we use the algorithm described in Subsection 4.3, but a salient modification
is necessary – some of the filtered jumps are mean-reversions of the process and
thus have to be excluded from the analysis. Accordingly, if there are two or
three consecutive jumps and the last one is of opposite sign, it is regarded as a
mean-reversion. 137 returns are classified as jumps by the filtering algorithm and
out of them 43 are assessed as mean-reversions, yielding the yearly frequency of
the Poisson process λ = (137 − 43)/1442 · 365 = 23.8. Counting downward and
upward jumps brings qd = 0.32, pu = 0.68. The minimal sizes of negative and
positive jumps are equal to md = −0.152,mu = 0.148, respectively.

The remaining parameters are estimated by the maximum likelihood method
– see Table 1 (in the density function specification (3) we take m = n = 2, which
is a compromise between the accuracy and the number of parameters to be
evaluated).

The parameters q1, q2, p1, p2 are all positive, so that the jump-size distribu-
tion turns out to be hyperexponential, a special case of the mixed-exponential
distribution. Figure 5 illustrates the adjustment of the density to the empirical
distribution of filtered jumps.
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q1 q2 ξ1 ξ2 p1 p2 η1 η2
0.06 0.94 1.78 21.78 0.64 0.36 5.79 40.66

Table 1. Estimated parameters of the mixed-exponential jump size distribution

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5. Mixed-exponential distribution fitted to the empirical distribution of jumps

7 Simulation of the spot prices and tests for the
trajectories

7.1 Discretization of the process

Lemma 1. Let Xt follow the equation (2) and may 0 ≤ s ≤ t, t ∈ T . Then

Xt = e−α(t−s)Xs +

∫ t

s

σe−α(t−u)dWu +
∑

s<u≤t, ∆Nu 6=0

e−α(t−u)∆Ju. (5)

Moreover, ∫ t

s

σe−α(t−u)dWu ∼ N

(
0, σ

√
1− e−2α(t−s)

2α

)
. (6)

Proof. We refer the reader to [14].
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Hence, the discretized dependency between the consecutive “daily” values of the
process Xt is of the form

Xtk = Xtk−1
exp

(
−α
365

)
+ σ

√
1− exp

(−2α
365

)
2α

N(0, 1) +

N1/365∑
i=1

Zi, (7)

where N(0, 1) is a standard normally distributed variable, N1/365 is a Poisson
random variable with the intensity parameter λ

365 , Zi are mixed-exponentially
distributed random variables. A sample trajectory put on the seasonality is
shown in Figure 6.
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Fig. 6. Simulated sample path in PLN/MWh

7.2 Goodness of fit of the sample paths

The comparison of two moments and 15%, 85% quantiles of the historical log-
returns and log-returns of 5000 simulated trajectories is shown in Table 2.

The Kolmogorov-Smirnov test for the equality of distributions of the real
log-increases and the log-increases of the simulated data gives no evidence to
reject the null hypothesis of the equality of these distributions at a reasonable
level – the averaged p-value (over 5000 samples) is equal to 0.09.

The reestimation procedure was also conducted, i.e. for each simulated path
all the parameters were estimated and then were averaged over samples – the
resulting parameters’ values were very similar to those computed during the
estimation described in Section 5.
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mean st. dev. 15% quantile 85% quantile
real data -0.00023 0.153 -0.126 0.131

simulations -0.00008 0.14 -0.128 0.133

Table 2. Moments and quantiles of the historical and 5000 simulated log-returns (av-
erages)

8 Analytical formula for the forward price

One of the biggest advantages of the model is that it enables to derive an ana-
lytical formula

F (t, T ) = EQ[ST |St] (8)

for the forward prices F(t,T), 0 < t ≤ T , T ∈ T , where Q is an equivalent
risk-neutral measure. Thanks to this analytical formula one can create a forward
curve and thanks to the change of measure it is possible to make the model suited
to the actual prices. From mathematical point of view, there are uncountably
many equivalent, potentially risk-neutral measures and the task is to pin down
the appropriate one. From financial point of view, the considered electrical energy
market is incomplete, as there are more sources of randomness (hence risk)
than risky assets, thus not every payoff may be replicated (hedged) with this
underlying asset and not risky one, for instance a bank account or a bond. In
the model there are two sources of risk: diffusion risk connected to the Wiener
process and jump risk related to the compound Poisson process. To deal with the
problem of calibration of the model to the actual market situation and quoted
forward contracts, the notions of the market prices of diffusion risk and jump
risk are introduced. Ascribing the concrete numerical values to the parameters
which denote the market prices of risks uniquely determines the choice of the
appropriate risk-neutral measure. For details, we refer the reader to [14].

Theorem 1. The analytical formula for the forward price within the model de-
fined in Section 2 by (2) and (3) is equal to

F (t, T ) = EQ[ST |Ft] =

G(T )

(
St
eg(t)

)e−α(T−t)

exp

( T∫
t

σe−α(T−s)
(
1

2
σe−α(T−s) − θQ

)
ds

)
·

exp

( T∫
t

(
emdqd

m∑
i=1

qi
ξie

α(T−s)

ξieα(T−s) + 1
+ emupu

n∑
j=1

pj
ηje

α(T−s)

ηjeα(T−s) − 1

)
λQds

− λQ(T − t)

)
, (9)
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where θQ is the market price of diffusion risk and λ
λQ is the market price of

jump risk with λQ an intensity of the compound Poisson process after change of
measure to the risk-neutral Q.

Proof. We refer the reader to [14].

9 Valuing options on electricity spot price

A call option contract on the underlying asset, which in this case is electricity
spot price, gives its holder at expiration date T the right (it is not an obligation
as in case of a forward contract) to buy electricity for K instead of ST . Likewise,
a put option contract secures the right to sell electricity for K instead of ST .

The problem of pricing at time t a call vanilla option Ct,T (K) on electicity
spot, expiring at time T and with strike K, is equivalent to finding value of the
following expression

Ct,T (K) = exp(−r(T − t))EQ[max(ST −K, 0)|St] =
exp(−r(T − t))EQ[max(exp(XT + g(T ))−K, 0)|Xt], (10)

where r is a discount rate. Analogously, a price of a put vanilla option Pt,T (K)
is given by

Pt,T (K) = exp(−r(T − t))EQ [max(K − exp(XT + g(T )), 0)|Xt] . (11)

Here we assume that Q = P, i.e. that we price options with respect to the
physical measure, where the probabilities of events are induced by the historical
realisation of prices values. It is due to the fact that methodology and results
of the calibration of the model to the risk-neutral measure Q lie out of the
scope of this article, and are the subject of a forthcoming paper. In this section
we concentrate on a form of the price estimator and application of the driving
process simulation method described earlier.

An adequate tool to cope with such defined problem is a Monte Carlo setup.
By the strong law of large numbers, Monte Carlo estimators of (10) and (11) are
equal to

Ĉt,T = exp(−r(T − t)) 1
n

n∑
i=1

max
(
exp

(
X

(i)
T + g(T )

)
−K, 0

)
(12)

and

P̂t,T = exp(−r(T − t)) 1
n

n∑
i=1

max
(
K − exp

(
X

(i)
T + g(T )

)
, 0
)
, (13)

where X(1)
T , X

(2)
T , . . . , X

(n)
T are sample values of the process X at time T obtained

by simulating trajectories from t up to T according to the formula (7).
In Table 3 there are presented call and put option prices on electricity spot

with time to expiry equal to 90 days, i.e. T − t = 90
365 , and with different strike

prices K. The value of the seasonality function at expiry date is exp(g(T )) = 158
PLN/MWh, discount rate r = 0.02.
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K 120 130 140 150 160 170 180 190
Ĉt,T 43.90 34.11 24.66 16.24 9.89 6.00 3.85 2.69
P̂t,T 0.14 0.30 0.80 2.33 5.93 11.00 19.79 28.59

Table 3. Call and put option prices on electricity spot with time to expiry equal to 90
days and the seasonality function at expiry date equal to 158 PLN/MWh

10 Conclusions

In the article the authors introduce the new model for electricity spot prices
which are quoted on the Polish Power Exchange, taking into account all the
specificity of the Warsaw market, as well as the electrical energy prices specificity
in general. Several novel ideas concerning seasonality matching, spikes filtering,
jump-size distribution, etc. are put into practice. The parameters are estimated
basing on the historical data. The model is validated by performing simulations
and tests for goodness of fit, which legitimize the proposed approach. Within
the model there exists an analytical formula for the forward prices allowing
for convenient calibration of the model to the forward contracts quoted on the
exchange, making use of the notions of the market prices of diffusion and jump
risks. Finally, valuing of options on electricity spot price is performed.
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Abstract. The Valsalva manoeuvre is a simple and low-risk procedure
used for assessing the autonomic nervous system or for diagnosing several
heart conditions. The analysis of the cardiovascular alterations occurring
during and after the manoeuvre due to the changes of the intrathoracic
pressure can be facilitated using mathematical modelling. In this paper
we present a method of employing a mathematical model to simulate
the haemodynamic response to the Valsalva manoeuvre in a given indi-
vidual. In particular, we present a method of adapting our own multi-
compartmental mathematical model of cardiovascular system (based on
standard physiological data from the literature) to reflect the steady state
of the cardiovascular system in the given subject before the manoeuvre
is started. The structure of our cardiovascular model is also briefly dis-
cussed providing some particulars on the used modelling techniques.

Keywords: blood pressure, heart rate variations, baroreflex, autonomic
function, mathematical model

1 Introduction

The Valsalva manoeuvre (VM) is often used as a simple, non-invasive, inex-
pensive and low-risk procedure of diagnosing several heart conditions (including
heart failure and heart murmurs abnormalities) [1–5] or for testing the auto-
nomic nervous system [6–9]. The manoeuvre consists in a forced expiratory effort
against a closed airway, which increases the intrathoracic and intra-abdominal
pressure and causes a specific haemodynamic response [10–12]. The VM trig-
gers several cardiovascular regulatory mechanisms which are based mainly on
the activity of baroreceptors (blood pressure sensors), with some influence from
slowly adapting pulmonary stretch receptors, as well as central and peripheral
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chemoreceptors [13–15, 11] and an almost negligible impact of nonautonomic
humoral mechanisms (e.g. angiotensin II) [16].

For assessing the autonomic function, the VM is typically performed with
the patient in the supine or sitting position with the intraoral pressure equal to
40 mm Hg maintained for 15 seconds [11, 12]. The diagnosis is based on heart
rate variations, which can be recorded with electrocardiography or using a finger
cuff device [12].

The changes in arterial blood pressure (BP) and heart rate (HR) during
and after the typical VM can be divided into 4 physiological phases, as follows
[17] (see Figure 1): (I) onset of strain with a rise of arterial pressure and a
slight drop of HR, (II) continued strain with a decrease of arterial pressure, the
corresponding tachycardia and ensuing partial pressure recovery, (III) pressure
release with a sudden drop of BP and further increase in HR, (IV) arterial
pressure overshoot and the resulting bradycardia [12].

Fig. 1. Simulation of mean arterial pressure and heart rate changes during the Valsalva
manoeuvre in a reference patient (the intrathoracic pressure increased to 40 mm Hg
for 15 seconds)

2 Mathematical model

2.1 Model structure

We developed a multi-compartmental non-pulsatile model of the cardiovascu-
lar system with three baroreflex mechanisms controlling heart rate, peripheral
resistance and venous capacity [18]. The proposed model (operating on mean
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blood pressures) is much simpler than previously existing multi-compartmental
pulsatile models of the VM (describing instantaneous changes of blood pressure
with pulse pressure) [19, 20], but still provides a satisfactory representation of
the haemodynamic response to the VM. The complete description of the model,
its validation and limitations can be found in our previous work [18].

The cardiovascular part of the model involves 7 vascular compartments (aorta,
systemic arteries, systemic capillaries, systemic veins, vena cava, pulmonary ar-
teries and pulmonary veins) and 2 cardiac chambers (right heart and left heart,
each combining the corresponding atrium and ventricle) [18]. To enable simula-
tion of the VM, 6 intrathoracic compartments (vena cava, right heart, pulmonary
arteries, pulmonary veins, left heart and aorta) are connected to a pressure source
corresponding to the intrathoracic pressure (see Figure 2) [18]. The vena cava
compartment includes both superior and inferior vena cavae. All vascular com-
partments are modelled as capacitors (representing the volume of blood stored
in the compartment at a given pressure) with hydraulic resistances between
the compartments corresponding to pressure and energy losses associated with
the blood flow (the resistances change dynamically with the changes in the com-
partment volumes) [18]. With the compartmental structure of the cardiovascular
model, we do not describe the continuous blood pressure decline along the blood
vessels, but we approximate it instead with a step pressure reduction between the
adjacent compartments. Therefore, within each compartment the blood pressure
is uniform and equal to the pressure at the entry to the corresponding vascula-
ture.

Fig. 2. Electric analogy of the cardiovascular model, where R denotes resistances, P –
pressures, C – capacities, qr and ql – cardiac outputs from right and left heart ventricles
respectively. The meaning of subscripts is: aor – aorta, sa – systemic arteries, sc –
systemic capillaries, sv – systemic veins, vc – vena cava, pa – pulmonary arteries, pv
– pulmonary veins, rh – right heart, lh – left heart, ra – right atrium, la – left atrium,
th – intrathoracic [18].
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A slight modification of the representation of vena cava resistance in the
model was employed for modelling backflow of blood from right atrium and vena
cava during the onset of Valsalva manoeuvre, when the increased intrathoracic
pressure compresses these two compartments and pushes some blood back into
the systemic veins. Having vena cava resistance represented in the model as a
hydraulic resistor between vena cava and right atrium (with the resistance being
volume-dependent as described in [18]) distorts the process of emptying of these
two compartments, since the significant increase of vena cava resistance (due to
volume reduction) impedes emptying of right atrium, while not affecting empty-
ing of vena cava itself. In order to make this process more realistic in the model,
for backflow calculations, vena cava resistance was divided in two equal parts
localized on each side of vena cava compartment. This way, the blood pushed
from the right atrium back to vena cava flows across half of vena cava resistance,
while backflow from vena cava to systemic veins takes into account the other half
of vena cava resistance (the resistance of systemic veins, being relatively small,
was neglected here). This solution was included mainly for technical correctness
to avoid unnaturally high differences between pressures of vena cava and right
atrium, however it does not affect the results significantly. For normal blood flow
(towards the heart) vena cava resistance is always represented as one resistor lo-
calized between vena cava and right atrium (see Figure 2).

For all systemic venous compartments (ie. systemic veins and vena cava)
nonlinear pressure-volume curves were used due to relatively high lumped com-
pliance of these compartments and relatively high differences in their operating
pressures (especially in systemic veins) [18]. For other compartments, linear P-V
relationships were used assuming relatively small compliance changes, in which
case a linear approximation does not lead to large errors.

A nonlinear (sigmoidal) function was used to describe the relationship be-
tween the ventricular stroke volume and atrial pressure (the Frank-Starling law).
For the right ventricle we have the following equation [18]:

SVr =
SVmax,r

1 + exp
(

−Pra−xr

sr

)ar (1)

where SVmax,r represents the maximal right ventricular stroke volume, sr deter-
mines the slope of the sigmoidal function, xr describes the position of the curve
with respect to the atrial pressure axis, ar is a functional parameter describing
the impact of afterload ie. the increase or decrease of stroke volume as a result
of decreased or increased pressure downstream the ventricle ([18]).

An analogous equation is used for the left ventricle [18]:

SVl =
SVmax,l

1 + exp
(

−Pla−xl

sl

)al (2)
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Under the steady-state conditions the cardiac output from both ventricles
(calculated as the product of stroke volume and heart frequency) must be equal:

ql = SVlf = SVrf = qr (3)

The parameters s and x for both equations are calculated before each run of
the model as follows. The parameter sr is calculated so that when the system
is operating at the nominal conditions (ie. at the nominal right atrial pressure
Pra,n and the nominal cardiac output qn) the slope of the SVr curve (at the
nominal operating point) is equal to cardiac output sensitivity to right atrial
pressure sensr = 35 ml/min/mmHg/kg [21]. Associating the slope of the curve
with the derivative dSVr/dPra (from equation 1) and neglecting the impact of
afterload, we have hence the following equation for sr:

sr =
SVmax,r

(
SVmax,rfn

qn
− 1

)
kr

(
SVmax,rfn

qn

)2 (4)

where qn is the nominal cardiac output (qn = 80 ml/min/kg body weight
[21]) and kr is sensr transformed to ml/mmHg units:

kr =
sensrBW

60fn
(5)

where BW is the patient body weight and fn is the nominal heart frequency
(heart rate) in beats per minute (fn = 75 bpm [22]).

Similarly, we have:

sl =
SVmax,l

(
SVmax,lfn

qn
− 1

)
kl

(
SVmax,lfn

qn

)2 (6)

kl =
senslBW

60fn
(7)

where sensl is the sensitivity of cardiac output to changes of left atrial pres-
sure (sensl = 20.5 ml/min/mmHg/kg [23]). SVmax,r and SVmax,l were both
given the value 130 ml [22].

The parameters xr and xl are set so that at the nominal atrial pressures
(Pra,n and Pla,n) both right and left ventricular outputs (being the product of
stroke volume and heart rate) are equal to the nominal cardiac output.
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xr = −Pra,n − sr log

(
SVmax,rfn

qn
− 1

)
(8)

xl = −Pla,n − sl log

(
SVmax,lfn

qn
− 1

)
(9)

Sigmoidal functions were also used to describe the operation of baroreflex
mechanisms based on the activity of three groups of baroreceptors – aortic
baroreceptors located in the aortic arch, carotid baroreceptors located in carotid
sinuses and cardiopulmonary baroreceptors located in the right atrium [18]. All
baroreceptors measure continuously the blood pressure in each location and com-
pare the measured values with the normal value for the given location. Based
on the weighted sum of pressure deviations from normal levels, the baroreflex
mechanisms modify then the controlled parameters (ie. heart rate, peripheral
resistance and venous unstressed volume) in order to bring the pressures back to
normal [18]. Note that during the VM the aortic transmural pressure measured
by the aortic baroreceptors deviates from the normal aortic pressure to a much
higher extent than the transmural pressure in the carotid sinuses.

The model is implemented in Matlab R© (The Mathworks Inc.) and all simula-
tions are performed using a built-in solver for stiff systems of ordinary differential
equations (ode15s) [18].

2.2 Model parameters

The model includes the following parameters: general parameters of the car-
diovascular system (nominal cardiac output, nominal HR, total blood volume),
parameters related to P-V curves (blood distribution, nominal pressures and
compliances, maximal volumes, parameter reflecting the relative level of vascu-
lar compliance etc.), parameters of cardiac stroke volume curve (maximal stroke
volume etc.) and parameters of all baroreflex mechanisms (amplitudes, gains and
time constants) [18].

All model parameters were taken from the literature and correspond to a
normal healthy reference patient - an active, but untrained 70-kg mature male
individual, as described in our previous work [18]. The initial (nominal) resis-
tances have been calculated from the nominal pressure differences across the
adjacent compartments in the normal steady state taking the nominal blood
flow across the whole system of 80 ml/min/kg body weight [21].

Note that the nominal pressures used in the model for each compartment
(see [18]) are not the average pressures of the corresponding part of the hu-
man vasculature, but the pressures at the entrance of the given vascular tree
(as described earlier). Therefore the derived pressure-volume curves and their
parameters (eg. unstressed volumes) do not necessarily reflect the real values
from humans. In the model it is assumed that all the blood stored in a given
compartment is subject to the same pressure and that the modelled vessels have
a constant cross-section (constant radius) throughout their length. In reality, not
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only the blood pressure drops continuously across the length of the vessels (due
to friction losses), but also the total cross-section of the vessel (or a group of
vessels) is subject to variations. This aspect can be mostly seen in the systemic
arteries compartment which includes large arteries, small arteries and arterioles
with a significant pressure difference between the beginning (large arteries) and
the end of the compartment (arterioles). This issue applies to all compartments
used in the model (although in other compartments the pressure differences are
much smaller), however, it has no significant impact on the model outcomes.

2.3 Assumptions

The following assumptions were used when developing the cardiovascular model:

1. blood is an incompressible and Newtonian fluid
2. blood flow throughout the system is laminar
3. the body is in the supine position
4. the effects of muscle pump and respiratory pump are negligible
5. normal intrathoracic pressure is equal to the ambient pressure
6. systemic arteries (except aorta), systemic veins (except vena cava) and sys-

temic capillaries are not compressed by the increased intrathoracic or intra-
abdominal pressure

7. inertance effects associated with the blood flow are negligible
8. the cross-section of all vessels remain circular at all times (including vena

cava during collapse)
9. active response of vascular smooth muscles to pressure changes is negligible

10. vascular viscoelastic effects (stress relaxation) are negligible
11. there is no hysteresis in the vascular pressure-volume curves
12. the pressure waves reflected from vessel bifurcations are negligible
13. there is no blood filtration or refilling across the capillaries
14. the Anrep effect (a mild increase in heart contractility at increased afterload)

is negligible
15. there is no pressure “talk” between right and left ventricle (as modelled in

[24])
16. the effects of respiration on heart rate variations are negligible
17. there is no time latency in baroreflex operation
18. baroreceptors are not sensitive to the rate of pressure changes
19. there are no other mechanisms controlling blood pressure (eg. chemorecep-

tors or lung mechanoreceptors)
20. there is no regional blood flow autoregulation (eg. in brain, heart or kidneys)

3 Model adaptation to the individual patient

3.1 Method overview

The main outputs of the VM are the variations of arterial blood pressure and
heart rate measured before, during and after the manoeuvre. The same variables



126 Leszek Pstraś et al.

are the main outputs of our model simulations, as shown in Figure 1. Since the
model is based on the literature data representing the reference patient, the
comparison of model simulations with experimental data from real patients is
not straightforward.

Initially (before any changes of the intrathoracic pressure), the cardiovas-
cular system (modelled as described above and in our previous work [18]) is
in the steady state. This steady state is characterized by the cardiac output,
heart rate, blood pressures, compartment volumes etc. as set for the reference
patient. Before simulating the cardiovascular response to the VM in a real pa-
tient, one should modify some model parameters in order to better represent
the analysed patient in the simulation. More specifically, one should shift the
modelled system from the original steady state corresponding to the physiology
of the reference patient to a new steady state corresponding, as well as possi-
ble, to the haemodynamics of the given patient. Obviously it is not feasible to
provide all the individual pressures and blood distribution across all cardiovas-
cular compartments or other physiological parameters. Therefore, we decided to
use a simplified approach and concentrate only on two most important physio-
logical parameters for analysing cardiovascular response to the VM. As already
mentioned, these are the arterial blood pressure and heart rate, which are both
easy to measure in the patient and which are monitored anyway during the VM.
Consequently, we wanted to shift the cardiovascular system to the steady state
corresponding to the average arterial blood pressure and average heart rate of
the given patient measured before the manoeuvre (ideally recorded over a longer
period of time in order to smooth out the natural individual variations and to
represent as much as possible the normal values for the given patient, assuming
that the patient is not overly excited or anxious). At the same time we wanted
to keep as much parameters as possible on the level typically reported in the
literature. The problem was hence to find a minimal number of model parame-
ters that need to be changed in order to shift the system to a new steady state
corresponding to the desired arterial blood pressure and heart rate.

Since heart rate is one of the model parameters (and hence one can set it
directly to the desired value), the problem was how to obtain the required steady-
state arterial blood pressure. Any steady state of the cardiovascular system is
associated with a certain blood flow which must be equal to the output of both
right and left heart ventricles. Therefore, in order to shift the system to a new
steady state, one has to modify somehow the cardiac output. This can be done
by changing the parameters of the relationships between the stroke volume and
atrial pressure for right and left ventricles (equations 1 and 2 representing the
Frank-Starling law of the heart).

We decided to keep the shape of both stroke volume curves unchanged ie.
to keep the slopes (parameters s) and the maximal values (parameters SVmax)
of both sigmoidal functions at the original level corresponding to the reference
patient. To modify the steady state of the system we propose to shift horizontally
the right ventricular stroke volume curve by changing the parameter xr of the
Frank-Starling relationship of the right heart (equation 1). Shifting the stroke
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volume curve of the right ventricle results in a significant change of the output
of the right ventricle. This in turn affects the amount of blood remaining in the
right atrium and the amount of blood entering pulmonary arteries. Consequently,
it affects blood pressure in right atrium and pulmonary arteries, which in turn
affect the blood flow to and from the adjacent compartment and hence the blood
flow in all other blood compartments across the whole cardiovascular system.
These transient blood flow conditions continue until a new steady state is reached
with a new level of blood flow across the system corresponding to the new cardiac
output (as determined by the modified stroke volume curve). Using a Matlab
built-in function fminsearch, which uses the simplex search method [25], we are
able to find the value of parameter xr needed to obtain the desired arterial blood
pressure.

Hence, by changing directly only two model parameters i.e. heart rate and
parameter xr we are able to shift the system to a new steady state in which
the cardiac output and the blood pressures, blood volumes and resistances of
all compartments are modified so that the arterial blood pressure reaches the
desired level.

The only other model parameters that can be easily adjusted for the given
patient, are the parameters expressed per kg of body weight which can be scaled
to the weight of the given patient. These include: nominal vascular compliances,
total blood volume or cardiac output sensitivity to right and left atrial pressure
changes. All other model parameters are assumed to remain at the original level
corresponding to the physiology of the reference patient.

3.2 Case study

Below we present an example of shifting the system from the original steady
state for the reference patient with the arterial blood pressure Psa = 90 mm
Hg and the heart rate f = 75 bpm to a new steady state corresponding to the
arterial blood pressure Psa = 110 mm Hg and the heart rate f = 70 bpm. As
described above, to reach the new steady state we changed directly the value of
heart rate (from 75 to 70 bpm) and we changed the value of parameter xr (from
-1.71 to 3.05), which corresponded to a horizontal shift of the right ventricular
stroke volume curve, as shown in Figure 3.

The original steady-state conditions for the reference patient were as follows:
right atrial pressure Pra = 2 mm Hg, left atrial pressure Pla = 5 mm Hg, stroke
volume SV = 74.67 ml, cardiac output q = 93.33 ml/s (q = SV f). The new
steady-state conditions are as follows: right atrial pressure Pra = -1.62 mm Hg,
left atrial pressure Pla = 6.93 mm Hg, stroke volume SV = 105.55 ml, cardiac
output q = 123.15 ml/s.

Figure 4 shows the operating points on the pressure-volume curves for each
cardiovascular compartment before and after the changes. In this example we
assumed that the new patient has the same weight as the reference patient (70
kg) and hence all model parameters (except heart rate and xr) are the same
as for the reference patient (based on the literature data). In particular, the
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Fig. 3. Frank-Starling relationship between the stroke volume and atrial pressure mod-
elled for a) the reference patient (solid lines with the dots representing the original
steady-state conditions), b) the new patient (dashed lines with the squares represent-
ing the new steady-state conditions).

parameters of the pressure-volume curves of all cardiac and vascular compart-
ments (ie. unstressed volumes, maximal volumes etc.) are exactly the same as
for the reference patient, hence the new steady state corresponding to the new
patient is obtained by forcing the model to change the operating points on all
pressure-volume curves (ie. to change accordingly the volumes of blood stored
in each compartment).

Finally, Figure 5 shows the simulation of the haemodynamic response to the
typical 15-s VM (with the intrathoracic pressure increased to 40 mm Hg) starting
from both the original steady state of the cardiovascular system in the reference
patient and from the new steady state.

3.3 Technical considerations

In order to reach the desired steady state of the cardiovascular system, the
baroreflex mechanisms and the stroke volume dependence on afterload have to
be temporarily switched off in the model, as these mechanisms depend on the
reference pressures set originally for the reference patient. After finding the new
steady state of the system and the corresponding pressures and volumes of each
compartment, the new steady-state pressures may be then used as the new ref-
erence pressures for these mechanisms (aortic, arterial and right atrial pressures
for the baroreflex mechanisms; pulmonary arterial and aortic pressures for the
afterload impact on the stroke volume of right and left heart respectively), as-
suming that these pressures represent the normal values for the given patient.
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Fig. 4. Operating points on the cardiovascular pressure-volume curves for the original
steady-state conditions for the reference patient (blue dots) and for the new steady-
state conditions (black squares). The parameters of all pressure-volume curves remained
unchanged.

Alternatively, in order not to switch off the baroreflex mechanisms or the im-
pact of afterload, in each modelling step during the transient conditions one
could take the current blood pressures as the normal values, thus indicating no
deviations of pressure from the normal levels and, hence, effectively disabling
the regulatory mechanisms. This approach leads to the same result, however, it
is associated with a higher computational cost.

Following the change of heart rate, the minimal and maximal heart rate
admissible by the baroreflex control of heart will also change accordingly (these
parameters are calculated in the model so that in the steady state conditions
the baroreflex operates in the middle point of the sigmoidal curve) [18].

Note that, instead of changing the parameter xr of the Frank-Starling rela-
tionship for the right heart (ie. moving horizontally the curve relating the right
ventricular stroke volume to the right atrial pressure), one could change the
parameter xl of the analogous relationship for the left heart. In this study, the
former has been changed based on the assumption that any changes in the sys-
temic arterial pressure (with respect to the reference patient) will affect more
the right atrial pressure than the left atrial pressure.

As shown in Figure 6, the magnitude of hemodynamic response to the VM
simulated in the model depends strongly on the initial state of the system and
hence shifting the cardiovascular system to the steady-state conditions corre-
sponding to the mean arterial pressure of the given patient is crucial for simu-
lating the response to the VM. Obviously, the same holds for estimating some
physiological parameters of the given patient based on the recorded data on
arterial blood pressure and heart rate variations in response to the VM.
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Fig. 5. Simulation of mean arterial blood pressure (MAP) and heart rate (HR) vari-
ations in response to the 15-s Valsalva manoeuvre with the intrathoracic pressure
increased to 40 mm Hg modelled from the original steady state of the cardiovascular
system in the reference patient (solid lines) and from the modified steady state for the
given patient (dashed lines).

3.4 Discussion

One should be aware that the new steady state of the system reached using
the above approach reflects only the arterial pressure and heart rate of the
given patient and most likely does not represent correctly the actual state of all
cardiovascular compartments in the given patient and hence such an approach
is not ideal. In particular, the new value of cardiac output (equal to the blood
flow across the system in the new steady state) will likely not match the real
cardiac output of the given patient. Knowing the real cardiac output of the
patient (which can be measured invasively or estimated non-invasively), one
could change accordingly the values of both xr and xl parameters, thus having a
better representation of the cardiac function in the modelled patient and reaching
the correct steady-state cardiac output. Similarly, knowing the central venous
pressure (which again can be measured invasively or estimated non-invasively),
one could also change the parameter xl so that the new steady-state venous
pressure in the model would correspond to the measured value.

As far as the parameters scaled to patient’s weight are concerned, in the
future versions of the model, some of these parameters could depend not only on
the weight of the given individual, but also on other anthropometrics, such as
height or age. Some parameters, such as the maximal stroke volume (SVmax),
could also depend on the physical fitness of the given individual.

All other model parameters (except xr), as well as all per-kg values of the
scalable parameters remain at the levels set for the reference patient (based on
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Fig. 6.Model simulations of the normalized mean arterial pressure during the Valsalva
manoeuvre in patients with different cardiovascular steady-state conditions.

typical physiological data from the literature), unless one has some particular
information or data on the given patient, which would allow changing individual
parameters (e.g. decreased vascular compliance due to atherosclerosis).

We would like to point out also that using the presented approach we are
not able to shift the cardiovascular system to all possible states. For instance
there is an upper limit of the steady-state mean arterial pressure that one can
reach in the model using the presented method. This is related to the closed
nature of the cardiovascular system. When right and left ventricular outputs are
initially increased (following the changes of stroke volume curves), the arterial
pressure and the volume of blood in the arterial compartment increase as well.
This means that the volume of blood on the low-pressure side of the system (ie.
veins, vena cava, right atrium) must decrease and hence the right atrial pressure
decreases. This in turn increases the pressure difference between the arteries and
right atrium and hence increases the blood flow in the system (which is needed
to keep the arterial pressure high). However, lowering right atrial pressure results
in reducing the output of right heart ventricle (according to the Frank-Starling
law, see equation 1 or Figure 3) which cannot keep up with the high blood
inflow to the heart and hence the right atrial pressure starts to increase, which
re-increases the right ventricular output, but also reduces the amount of blood
in the arteries. This continues until the system finds a steady state and hence
there is a maximal arterial pressure that can be reached (approximately 125 mm
Hg).

Also, changing significantly the right ventricular stroke volume curve (mov-
ing it far left along the atrial pressure axis) is associated with increasing the



132 Leszek Pstraś et al.

right ventricular output to a very high level. Depending on the initial blood dis-
tribution in the system this can quickly lead to emptying of right heart, which
can compromise the computational efficiency of the model.

The aforementioned parameter SVmax (maximal ventricular stroke volume)
may also pose limitation in some cases. For instance, it would be impossible to
reach a steady state with a very high mean arterial pressure and a low heart rate
without changing SVmax, as the cardiac output is the product of stroke volume
and heart rate and hence it is upper bounded by SVmaxf .

Nevertheless, in most cases the above limitations do not apply and the pre-
sented method is effective in the wide range of steady-state conditions of the
cardiovascular system. Using this method we were able to simulate haemody-
namic response to the VM in several patients (as described in [18]) without any
problems. If, however, a need arises to shift the system to an extreme steady
state (e.g. a very high mean arterial pressure), one would need to change some
other model parameters (for instance, the initial blood distribution across the
system).

4 Conclusions

We presented a method of employing our mathematical model for simulating the
haemodynamic response to the Valsalva manoeuvre in a given individual. The
same method could be used for comparing the simulation results with experi-
mental data (ie. recorded blood pressure and heart rate variations in response to
the manoeuvre) to estimate some physiological parameters of the given patient.

The presented method enables simulation of the cardiovascular system of a
given subject starting from the steady-state conditions corresponding to the real
arterial blood pressure and heart rate of the patient. We acknowledge the fact
that this method is not ideal as it uses only two measured parameters, while
assuming all other parameters at the standard physiological level (as reported
in the literature). As already indicated, measuring additional parameters (such
as cardiac output or central venous pressure) could obviously provide better
results. Moreover, given any additional information on patient conditions, one
can always adjust accordingly the corresponding model parameters to improve
modelling accuracy.
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Abstract. Predicting causal effects of actions taken was always one of
the most important aims of human reasoning. Every human action is
meant to increase probability of desired circumstances and reduce risks
of unwanted ones. Actually, people seem to reason in the following way:
if probability of desired outcome after a given action is high enough, it
is worth trying. Yet prior chances of success (if action not adopted) are
completely ignored, perhaps assumed to be negligibly small.
Unfortunately, this approach suffers from serious drawbacks. Consider
for example a typical marketing campaign. Conducted on small random
sample of customers, it is used to evaluate a probability of purchase (re-
sponding to a campaign) after the action was performed. Then a classifi-
cation model is built to pick a group of customers, to which the campaign
should be addressed. We achieve a model targeting customers most likely
to buy after the campaign. But this is not what a marketer wants. Some
of the customers would have bought regardless of the campaign, tar-
geting them brought unnecessary costs. Other customers were actually
going to make a purchase but were annoyed by the campaign. It is a well
known phenomenon in the marketing literature; the result is a loss of a
sale or even a complete loss of the customer (churn).
We should rather select customers who will buy because of the campaign,
that is, those who are likely to buy if targeted, but unlikely to buy
otherwise. Only then we actually can focus on performing the action to
increase our chances, not just act when these chances are relatively high
anyway. Notice also that similar problems arise in medicine where some
patients may recover without actually being treated and some may be
hurt by the therapy’s side effects more than by the disease itself.
Uplift modelling provides a solution to the described problem. The ap-
proach uses two separate training sets: treatment and control. Individuals
in the treatment group are subjected to the action, such as a medical
treatment or a marketing campaign. The control dataset contains objects
which are not subjected to the action and serve as a background against
which its effect can be assessed. Instead of modelling class probabilities,
uplift modelling attempts to model the difference between conditional
class probabilities in the treatment and control groups. This way, the
causal influence of the action can be modelled, and the method is able to
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predict the true gain (with respect to taking no action) from targeting a
given individual.
As the uplift approach is being developed and increasingly appears to
be a prospective methodology, the need for more sophisticated tools be-
comes natural. In the case of classification, apart from more and better
algorithms appearing, a hugely important milestone has been the inven-
tion of ensemble methods which strengthen existing classification algo-
rithms. This powerful procedures allow to improve performance of many
classifiers in a general way, often turning weak single models into highly
capable ensembles. It becomes clear then, that a search for an uplift
analogue of ensemble methods is needed.
We consider a few methods of applying an idea of the boosting pro-
cedure to an uplift approach. These are: a double (classifier) boosting
approach being a natural way of implementing uplift boosting; a class
variable transformation allowing for application of any ordinary classi-
fiers to uplift modelling, and Uplift AdaBoost being a new algorithm
for uplift modelling which realizes one of the basic assumptions of clas-
sic boosting: forgetting the last member added to the ensemble in each
iteration.
We focus on the mechanism, used in classical boosting, of updating record
weights such that its classification error is exactly 1/2 after each iteration,
which makes it likely for the next member to be very different from the
previous one, leading to a diverse ensemble.
Implementation of this feature, known as forgetting the last member of
the ensemble, is significantly more complex than in classification case.
Since we have two datasets, treatment and control, reweighting instances
can be done in infinite number of ways. Unlike the classification boosting,
we have now two classification accuracies in each iteration, which should
be used in establishing model weights; this makes the problem more
challenging.
We construct an uplift AdaBoost algorithm preserving the feature of
forgetting by setting weight update parameters for treatment and con-
trol datasets as well as model weights for each iteration in a way which
guarantees convergence. We discuss analogies and dissimilarities between
classification and uplift boosting algorithms, including theoretical prop-
erties and practical consequences.
We perform an experimental evaluation that demonstrate the usefulness
of the methods considered. We compare their performance and perfor-
mance of the base models on benchmark datasets. A proposed uplift
boosting methods often dramatically improve performance of the base
models and are thus new and powerful tools for uplift modelling.

1 Introduction

The main interest of machine learning is the problem of classification, where the
task is to predict, based on a number of attributes, the class to which an instance
belongs, or the conditional probability of it belonging to each of the classes.
Unfortunately, classification is not well suited to many problems in marketing
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or medicine to which it is applied. Let us discuss it on the example of a direct
marketing campaign where potential customers receive a mailing offer.

A typical application of machine learning techniques in this context involves
selecting a small pilot sample of customers who receive the campaign. Next,
a classifier is built based on the pilot campaign outcomes and used to select
customers to whom the offer should be mailed. As a result, the customers most
likely to buy after the campaign will be selected as targets.

Unfortunately this is not what a marketer wants! Some of the customers
would have bought regardless of the campaign; targeting them resulted in un-
necessary costs. Other customers were actually going to make a purchase but
were annoyed by the campaign. The result is a loss of a sale or even a complete
loss of the customer (churn). While the second case may seem unlikely, it is a
well known phenomenon in the marketing community [1, 2].

In order to run a truly successful campaign, we need, instead, to be able
to select customers who will buy because of the campaign, i.e., those who are
likely to buy if targeted, but unlikely to buy otherwise. Similar problems arise in
medicine where some patients may recover without actually being treated and
some may be hurt by the therapy’s side effects more than by the disease itself.

Uplift modelling provides a solution to this problem. The approach employs
two separate training sets: treatment and control. The objects in the treatment
dataset have been subject to some action, such as a medical treatment or a
marketing campaign. The control dataset contains objects which have not been
subject to the action and serve as a background against which its effect can be
assessed. Instead of modelling class probabilities, uplift modelling attempts to
model the difference between conditional class probabilities in the treatment and
control groups. This way, the causal influence of the action can be modelled, and
the method is able to predict the true gain (with respect to taking no action)
from targeting a given individual.

While in described problems uplift modelling is a better alternative for stan-
dard classification, we should expect a dynamic development of the approach.
Yet, despite its practical appeal, uplift modelling has received surprisingly little
attention in the literature. There are, however, papers concerning uplift mod-
els and successful applications to practical problems, especially in marketing,
are reported. An American bank used uplift modelling to turn an unsuccessful
mailing campaign into a profitable one [3]. Applications have also been reported
in minimizing churn at mobile telecoms [4]. In [5] an approach to online adver-
tising has been proposed which combines uplift modelling with maximizing the
response rate in the treatment group to increase advertiser’s benefits.

Although there would not be any reservations to use an algorithm to choose
who should receive an advert or some marketing campaign, leaving a decision on
treatment to some statistical procedure may seem too controversial in medicine.
Still, doctors may be interested in factors indiated by the model to be responsible
for chances of recovery after the treatment was applied. What is more, uplift
modelling allows for any arbitrary number of factors, unlike typical medical
trials with control groups.
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As uplift approach is developed and seems to be a prospective methodol-
ogy, a need for more sophisticated tools become natural. As it was in the case
of classification, apart from more and better algorithms appearing, there was
a marvelous milestone done: ensemble methods were invented to strengthen all
existing classification algorithms. This powerful procedures allow to improve per-
formance of any classifier in a generic way, often turning weak single models into
highly capable ensembles. It becomes clear then, that search for uplift analogon
of ensemble methods is needed.

This paper presents an adaptation of AdaBoost algorithm to the uplift mod-
elling case. Boosting often dramatically improves performance of classification
models, and in this paper we demonstrate that it can bring similar benefits to
uplift modelling. We apply forgetting the last member of the ensemble to the
described problem, trying to repeat the success of the classical algorithm in the
uplift case. Experimental verification proves that the benefits of boosting extend
to the case of uplift modelling and shows relative merits of the new approach.

In the remaining part of this section we introduce a definition of an uplift
analogue of classification error and present two alternative ways to apply boost-
ing procedures to the uplift case: a class variable transformation and a double
classifier approach. We give an overview of the other related work and remind the
property of forgetting the last member of the ensemble in classification boost-
ing. But first we have to start with introducing a notation used throughout the
paper.

1.1 Notation

We will now introduce the notation used further in the article. We use the
superscript T for quantities related to the treatment group and the superscript
C for quantities related to the control group. For example, the treatment training
dataset will be denoted with DT and the control training dataset with DC . Both
datasets together constitute the whole training dataset, D = DT ∪ DC .

Each data record (x, y) consists of a vector of features x ∈ X and a class
y ∈ {0, 1} with 1 assumed to be the successful outcome, for example patient
recovery or a positive response to a marketing campaign. Let NT and NC denote
the number of records in the treatment and control datasets.

An uplift model is a function h : X → {0, 1}. The value h(x) = 1 means
the action is deemed beneficial for x by the model, h(x) = 0 means that its
impact is considered neutral or negative. By ‘positive outcome’ we mean that the
probability of success for a given individual x is higher if the action is performed
on her than if the action is not taken.

We will denote general probabilities related to the treatment and control
groups with PT and PC , respectively. For example, PT (y = 1, h = 1) stands
for probability that a randomly selected case in the treatment set has a positive
outcome and taking the action on it is predicted to be beneficial by an uplift
model h. We can now state more formally when an individual x should be subject
to an action, namely, when PT (y = 1|x)− PC(y = 1|x) > 0.
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In the m-th step of the boosting algorithm the i-th treatment group training
record is assumed to have a weight wT

m,i assigned to it. Likewise a weight wC
m,i

is assigned to the i-th control training case. Further, denote by

pTm =

∑NT

i=1 w
T
m,i∑NT

i=1 w
T
m,i +

∑NC

i=1 w
C
m,i

, pCm =

∑NC

i=1 w
C
m,i∑NT

i=1 w
T
m,i +

∑NC

i=1 w
C
m,i

(1)

the relative sizes of treatment and control datasets at step m. Notice that pTm +
pCm = 1 for every m.

1.2 An uplift analogue of classification error

We begin with mentioning a problem which is the biggest challenge of uplift
modelling as opposed to standard classification. The problem has been known
in statistical literature (see [6]) as the

Fundamental Problem of Causal Inference. For every individual,
only one of the outcomes is observed, after the individual has been sub-
ject to an action (treated) or when the individual has not been subject
to the action (was a control case), never both.

As a result we never know whether the action performed on a given individual
was truly beneficial. This is different from classification, where the true class of
each individual in the training set is known.

Due to the Fundamental Problem of Causal Inference we cannot tell whether
an uplift model correctly classified a given instance. We will, however, define an
approximate notion of classification error in the uplift case. A record (xTi , y

T
i )

is assumed to be classified correctly by an uplift model h if h(xTi ) = yTi and
(xTi , y

T
i ) ∈ DT ; a record (xCi , y

C
i ) is assumed to be classified correctly if h(xCi ) =

1− yCi and (xCi , y
C
i ) ∈ DC .

Intuitively, if a record (xTi , y
T
i ) belongs to the treatment group and a model

h predicts that it should receive the treatment (h(xTi ) = 1) then the outcome
should be positive (yTi = 1) if the recommendation is to be correct. Note that the
gain from the action might also be neutral if a success would have occurred also
without treatment, but at least the model’s recommendation is not in contradic-
tion with the observed outcome. If, on the contrary, the outcome for a record in
the treatment group is 0 and h(xTi ) = 1, the prediction is clearly wrong as the
true effect of the action can at best be neutral.

In the control group the situation is reversed. If the outcome was positive
(yCi = 1) but the model predicted that the treatment should be applied
(h(xCi ) = 1), the prediction is clearly wrong, since the treatment cannot be
truly beneficial, it can at best be neutral. To simplify notation we will introduce
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the following indicators:

eT (xTi ) =

{
0 if xTi ∈ DT and h(xTi ) = yTi ,

1 if xTi ∈ DT and h(xTi ) 6= yTi ,
(2)

eC(xCi ) =

{
0 if xCi ∈ DC and h(xCi ) 6= yCi ,

1 if xCi ∈ DC and h(xCi ) = yCi .
(3)

An index m will be added to indicate the m-th step of the algorithm. Let us
now define uplift analogues of classification error on the treatment and control
datasets and a combined error:

εTm =

∑
i: eTm(xi)=1 w

T
m,i∑NT

i=1 w
T
m,i

, εCm =

∑
i: eCm(xi)=1 w

C
m,i∑NC

i=1 w
C
m,i

, εm = pTmε
T
m + pCmε

C
m. (4)

The sums above are a shorthand notation for summing over misclassified in-
stances in the treatment and control training sets, which will also be used later
in the paper.

1.3 Double classifiers

The most obvious approach to uplift modelling is to build two classification
models hT and hC on the treatment and control groups respectively and to
subtract their predicted probabilities:

hU (x) = hT (x)− hC(x).

We will call this approach the double classifier approach. Its obvious appeal is
simplicity; however in many cases the approach may perform poorly. The reason
is that both models can focus on predicting the class probabilities themselves,
instead of making the best effort to predict the (usually much weaker) ‘uplift
signal’, i.e., the difference between conditional class probabilities in the treatment
and control groups. See [2] for a detailed discussion and an illustrative example1.
Nevertheless, in some cases the approach is competitive. This is the case when
the amount of training data is large enough to accurately estimate conditional
class probabilities in both groups or when the net gain is correlated with the class
variable, e.g. when people likely to buy a product are also likely to positively
respond to a marketing offer related to that product.

1.4 Class variable transformation

In [7] a class variable transformation was presented which allows for converting
an arbitrary classification model (the paper used logistic regression) into an

1 The example is based on artificial data with two attributes, one strongly affecting the
class probabilities independently from the treatment received, the other determining
the relatively small sensitivity to the treatment. A model based on two decision trees
uses only the first attribute.
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uplift model. The transformation simply replaces class values yCi in the control
group with their reverses 1 − yCi while keeping the treatment set class values
unchanged. As a result, a single classifier is built which directly models the
difference between success probabilities in the treatment and control groups. It
is easy to see that the errors defined in Equation 4 are equivalent to standard
classification errors for the transformed class.

1.5 Other related work

Despite its practical appeal, uplift modelling has seen relatively little attention
in the literature. Here we shortly discuss some other work not mentioned above.

Several algorithms have thus been proposed which directly model the differ-
ence between class probabilities in the treatment and control groups. Many of
them are based on modified decision trees. For example, [2] describe an uplift
tree learning algorithm which selects splits based on a statistical test of differ-
ences between treatment and control class probabilities. In [8, 9] uplift decision
trees based on information theoretical split criteria have been proposed.

Some work has also been published on using ensemble methods for uplift
modelling, although, to the best of our knowledge, none of them on boosting.
Bagging of uplift models has been mentioned in [2]. Uplift Random Forests have
been proposed by [10]; an extension, called causal conditional inference trees was
proposed by the same authors in [11]. A thorough experimental and theoretical
analysis of bagging and random forests in uplift modelling can be found in [12]
where it is argued that ensemble methods are especially well suited to this task
and that bagging performs surprisingly well.

Other uplift techniques have also been proposed. Regression based approaches
can be found in [13] or, in a medical context, in [14, 15].

[16] proposes a method for converting survival data such that uplift modelling
can, under certain assumptions, be directly applied to it.

Some variations on the uplift modelling theme have also been explored. [5]
proposed an approach in the context of online advertising, where it is necessary
to not only maximize the net gain, but also to increase advertiser’s benefits
through maximizing response rate in the treatment group. This type of problems
are beyond the scope of this paper.

1.6 Forgetting in classical AdaBoost

While many boosting algorithms are available, in this paper by ‘boosting’ we
mean the discrete AdaBoost algorithm [17]. Forgetting the last member added
to the ensemble means that after a new member is added, record weights are
updated such that its classification error is exactly 1/2. This makes it likely for
the next member to be very different from the previous one, leading to a diverse
ensemble. Full details can be found for example in [17–19]. This key property
will be important for adapting boosting to the uplift modelling case.

Now we can formulate an uplift analogon of AdaBoost algorithm.



142 Michał Sołtys, Szymon Jaroszewicz

2 Uplift AdaBoost

In this section we present the proposed algorithm and the property of forgetting
the last ensemble member in the context of uplift modelling.

2.1 Algorithm

Algorithm 1 presents AdaBoost algorithm for uplift modelling.

Input: set of treatment training records, DT = {
(
xT1 , y

T
1

)
, . . . ,

(
xTNT , y

T
NT

)
},

set of control training records, DC = {
(
xC1 , y

C
1

)
, . . . ,

(
xCNC , y

C
NC

)
},

base uplift algorithm to be boosted,
integer M specifying the number of iterations

1. Initialize weights wT1,i, w
C
1,i

2. For m← 1, . . . ,M

(a) wTm,i ←
wT

m,i∑
j w

T
m,j+

∑
j w

C
m,j

; wCm,i ←
wC

m,i∑
j w

T
m,j+

∑
j w

C
m,j

(b) Build a base model hm on D with wTm,i, w
C
m,i

(c) Compute the treatment and control errors εTm, εCm
(d) Compute βm =

pTmε
T
m+pCmε

C
m

1−pTmεTm−pCmεCm
(e) If βm = 1 or εTm /∈ (0, 1

2
) or εCm /∈ (0, 1

2
):

i. choose random weights wTm,i, w
C
m,i

ii. continue with next boosting iteration
(f) wTm+1,i ← wTm,i · (βm)1[hm(xTi )=yTi ]

(g) wCm+1,i ← wCm,i · (βm)1[hm(xCi )=1−yCi ]

(h) Add hm with coefficient βm to the ensemble

Output: The final hypothesis

hf (x) =

{
1 if

∑M
m=1

(
log 1

βm

)
hm(x) ≥ 1

2

∑M
m=1 log

1
βm
,

0 otherwise.
(5)

Algorithm 1: AdaBoost algorithm for uplift.

Note that the algorithm is a discrete boosting algorithm [17, 19], that is, the
base learners are assumed to return a discrete decision on whether the action
should be taken (1) or not (0). Algorithm 1, as presented in the figure, also
returns a decision. However, it can also return a numerical score,

s(x) =

M∑
m=1

(
log

1

βm

)
hm(x),

indicating how likely it is that the effect of the action is positive on a given case.
In the experimental Section 3 we will use this variant of the algorithm.
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AdaBoost can suffer from premature stops when the sum of weights of mis-
classified cases becomes 0 or is greater than 1/2. This problem turns to be even
more troublesome in the uplift modelling case. Hence, in step 2e of Algorithm 1
we restart the algorithm by assigning random weights drawn from the exponen-
tial distribution to records in both training datasets. The technique has been
suggested for classification boosting in [20].

2.2 Properties

Let us now examine what the property of forgetting the last model added to the
ensemble means in the context of uplift error defined in Equation 4. To forget
the member hm added in step m we need to choose weights in step m+ 1 such
that the combined error of hm is exactly one half, εm = 1

2 . From steps 2f and 2g
of Algorithm 1 we get that to ensure the condition holds at step m + 1, the
following equation for βm must be true:

βm
∑

i: eTm(xi)=0

wT
m,i + βm

∑
i: eCm(xi)=0

wC
m,i =

∑
i: eTm(xi)=1

wT
m,i +

∑
i: eCm(xi)=1

wC
m,i, (6)

that is, the total new weights of correctly classified examples need to be equal
to total new weights of incorrectly classified examples. After dividing both sides
by
∑NT

i=1 w
T
m,i +

∑NC

i=1 w
C
m,i the equation becomes

pTm(1− εTm)βm + pCm(1− εCm)βm = pTmε
T
m + pCmε

C
m. (7)

Note that unlike classical boosting, this condition does not uniquely determine
record weights.

Let us now give a justification of this condition in terms of performance of
an uplift model.

Theorem 1. Let h be an uplift model. If the balance condition holds and the
assignment of cases to the treatment and control groups is random then the
condition that the combined uplift error ε be equal to 1

2 is equivalent to

P (h = 1)
[
PT (y = 1|h = 1)− PC(y = 1|h = 1)

]
+ P (h = 0)

[
PC(y = 1|h = 0)− PT (y = 1|h = 0)

]
= 0. (8)

Proof. Note that the assumption of random group assignment implies PT (h =
1) = PC(h = 1) = P (h = 1) since both groups are scored with the same
model and have the same distributions of predictor variables. Using the balance
condition, the error ε of h, defined in Equation 4, can be expressed as (the second
equality follows from pT = pC = 1

2 )

2ε = 2PT (h = 1− y)pT + 2PC(h = y)pC = PT (h = 1− y) + PC(h = y)

= PT (h = 1, y = 0) + PT (h = 0, y = 1) + PC(h = y = 0) + PC(h = y = 1)

= PT (y = 0|h = 1)PT (h = 1) + PT (y = 1|h = 0)PT (h = 0)

+ PC(y = 1|h = 1)PC(h = 1) + PC(y = 0|h = 0)PC(h = 0).
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Using the assumption of random treatment assignment and rearranging:

= P (h = 1)
[
PT (y = 0|h = 1) + PC(y = 1|h = 1)

]
+ P (h = 0)

[
PT (y = 1|h = 0) + PC(y = 0|h = 0)

]
= P (h = 1)

[
1− PT (y = 1|h = 1) + PC(y = 1|h = 1)

]
+ P (h = 0)

[
PT (y = 1|h = 0) + 1− PC(y = 1|h = 0)

]
= 1 + P (h = 1)

[
−(PT (y = 1|h = 1)− PC(y = 1|h = 1))

]
+ P (h = 0)

[
PT (y = 1|h = 0)− PC(y = 1|h = 0)

]
.

After taking ε = 1
2 the result follows.

Note that the left term in (8) is the total gain in success probability due
to the action being taken on cases selected by the model and the right term is
the gain from not taking the action on cases not selected by the model. A good
uplift model tries to maximize both quantities, so the sum being equal to zero
corresponds to a model giving no overall gain over the controls.

When the balance condition holds, the forgetting property thus has a clear
interpretation in terms of uplift model performance. When the balance condition
does not hold, the interpretation is, at least partially, lost.

Note that βm we choose:

βm =
pTmε

T
m + pCmε

C
m

1− (pTmε
T
m + pCmε

C
m)

(9)

is identical to the result in classical boosting with the classification error being
replaced by its uplift analogue.

3 Experimental evaluation

In this section we present an experimental evaluation of the three proposed al-
gorithms and compare their performance with performance of the base models.
We begin by describing the test datasets we are going to use, then review the
approaches to evaluating uplift models and finally present the experimental re-
sults.

3.1 Benchmark datasets

A significant problem one encounters while working on uplift modelling is the
lack of publicly available datasets. Even though control groups are ubiquitous in
medicine and their use in marketing is growing, there are relatively few publicly
available datasets which include a control group and a reasonable number of
predictive attributes. In our experiments we are going to use datasets from the
UCI repository artificially split into treatment and control groups. We describe
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Table 1. Conversion of UCI datasets into treatment and control groups.

dataset treatment/control #removed attributes /
split condition # original attributes

breast-cancer menopause = ‘PREMENO’ 2/9
credit-a a7 6= ‘V’ 3/15
dermatology exocytosis ≤ 1 16/34
liver-disorders drinks < 2 2/6
splice attribute1 ∈ {‘A’, ‘G’} 2/61
winequal-red sulfur dioxide < 46.47 2/11

here the procedure used to split standard UCI datasets in a way suitable for
uplift modelling. The details of the approach can be found in [8, 9].

The conversion is performed by first picking one of the data attributes which
splits the data evenly into two groups. Details are given in Table 1. The first
column contains the dataset name and the second provides the condition used to
select records for the treatment group. The remaining records formed the control.
A further postprocessing step removed attributes strongly correlated with the
split itself; ideally, the division into treatment and control groups should be
independent from all predictive attributes, but this is possible only in a controlled
experiment. A simple heuristic was used for this purpose:

1. A numerical attribute was removed if its means in the treatment and control
datasets differed by more than 25%.

2. A categorical attribute was removed if the probability of one of its categories
differed between the treatment and control datasets by more than 0.25.

The number of removed attributes vs. the total number of attributes is shown
in the third column of Table 1.

Further, multiclass problems were converted into binary problems with the
majority class assumed to be class 1 (the desired outcome) and the remaining
classes merged into class 0. We note that it is possible to use all analyzed uplift
methods in the multiclass setting, however, we chose to use binarization in order
to make the analysis (e.g. drawing curves) easier.

3.2 Methodology

Building uplift models requires two training sets. Consequently, we also have two
test sets: treatment and control. A typical approach to assessing uplift models [2,
1] is to score both test datasets using the same uplift model and assume that
objects in the treatment and control groups which have received similar scores
are similar and can be compared with each other. In [1] the authors grouped
treatment and control test cases by deciles of their scores and estimated net
gains by subtracting success rates within each decile.
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A more practical modification of this approach is to visualize model per-
formance using uplift curves [8, 2]. Recall that one of the tools for assessing
performance of standard classification models are lift curves2, where the x axis
corresponds to the number of cases subjected to an action and the y axis to the
number of successes captured by the model.

In order to obtain an uplift curve we score both test sets using the uplift model
and subtract the lift curve generated on the control test set from the lift curve
generated on the treatment test set. The number of successes for both curves
is expressed as percentage of the total population such that the subtraction is
meaningful.

The interpretation of the uplift curve is as follows: on the x axis we select
the percentage of the population on which the action is performed, and on the
y axis we read the net gain achieved on the targeted group (the net gain on the
remaining cases is zero since no action was performed on them). The point at
x = 100% gives the gain in success probability we would obtain if the action
was applied to the whole population. A diagonal uplift curve corresponds to
performing the action on a randomly selected percentage of the population.
More details can be found in [8, 2].

As with ROC curves, we can use the Area Under the Uplift Curve (AUUC) to
summarize model performance with a single number. We subtract the area under
the diagonal from this value in order to obtain more meaningful numbers. Note
that the area under the uplift curve can be less than zero; this happens when
the model gives high scores to cases for which the action has a predominantly
negative effect.

All experiments have been performed by randomly splitting each dataset into
training (80% of the data) and test (the remaining 20%) parts. Each experiment
was repeated 128 times, and the resulting uplift curves have been averaged. The
reason for this choice was to make the results repeatable and less sensitive to
the random seed used. However, the disadvantage of such an approach is that
it hides the variance of the predictions. To address this issue we also compute
standard deviations of AUUCs computed over the 128 test sets in a manner
similar to bootstrap estimates.

3.3 Experiments

As base models to be boosted we use two types of decision trees: unpruned J4.8
trees and decision stumps implemented in Weka package. We apply to them the
three methods of boosting in the uplift approach: double (classical) boosting,
class variable transformation and uplift AdaBoost algorithm proposed by us.

Thus we obtain two base models:

– a double classifier,
– a classifier with the class variable transformation

and four boosted models:
2 Also known as cumulative gains curves or cumulative accuracy profiles.
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– a doubled classical boosting ensemble,
– uplift AdaBoost ensemble with doubled classifiers,
– a classical boosting ensemble of classifiers with class variable transformation,
– uplift AdaBoost ensemble of classifiers with class variable transformation.

The class variable transformation is named shortly Z model, e.g. a decision tree
with class variable transformation is named ”Z decision tree”. Note that ”dou-
bling” and ”Z transformation” are two different ways of achieving uplift models,
which than can be boosted with Uplift AdaBoost. Alternatively, we can double
(classically) boosted classifiers or classically boost Z models.

In each ensemble we build B = 101 base models being members of the en-
semble. This choice of the ensemble size is justified by the trade off: the B large
enough to get a fully developed ensemble and not too big for practical applica-
tions.

Figures 1 to 6 present the uplift curves for chosen UCI datasets and the
algorithms applied to J4.8 unpruned decision tree as a base model. In most
cases boosting generally improves the base double model and often the proposed
uplift model is superior to the ordinary double boosted model. In some cases
the latter can eventually fail, which did not happen with the new algorithm (see
Figure 2). Note also that the class variable transformation usually does not work
properly with uplift AdaBoost.

For decision stumps the results are not so impressive. In fact, this base model
sometimes works fine with classical boosting on the data with the class variable
transormation, but not for the uplift AdaBoost with variable transformation
(not presented on Figures).

4 Conclusions

In this paper we have developed a new boosting algorithm for the uplift mod-
elling problem. We discuss some of its properties in relation to the classification
AdaBoost algorithm and present the two other approaches to boosting in the
uplift case.

Experimental evaluation showed that boosting has a potential to dramati-
cally improve the performance of uplift models and the proposed algorithm often
outperform the other two approaches. Our experiments demonstrate that ensem-
ble methods often bring dramatic improvements in performance, turning useless
single trees into highly capable ensembles. In some cases the Area Under the
Uplift Curve of an ensemble was over double that of the base learner.

We conclude that further investigation of the designed algorithm is very
promising and should be continued for various types of base models, as for some
of them a possible improvement of model accuracy may be very remarkable.
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Fig. 1. Uplift curves for breast-cancer dataset.

Fig. 2. Uplift curves for credit-a dataset.
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Fig. 3. Uplift curves for dermatology dataset.

Fig. 4. Uplift curves for liver-disorders dataset.
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Fig. 5. Uplift curves for splice dataset.

Fig. 6. Uplift curves for winequal-red dataset.
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10. Guelman, L., Guillén, M., Pérez-Maŕin, A.: Random forests for uplift modeling: An
insurance customer retention case. In: Modeling and Simulation in Engineering,
Economics and Management. Volume 115 of Lecture Notes in Business Information
Processing (LNBIP). Springer (2012) 123–133
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Abstract. We consider selection procedure for high-dimensional logis-
tic regression problem which consists in choosing a subset of predictors
which minimizes Generalized Information Criterion (GIC) over all sub-
sets of variables of size not exceeding preset value kn which may depend
on a sample size. Nonasymptotic bound on probability of erroneous selec-
tion is proved which yields a range for GIC penalty parameter for which
the procedure is consistent under mild assumptions and thus generalizes
results of [1] and [2]. Various modifications of the procedure are analyzed
using numerical examples.

1 Introduction

Let n be the number of observations and Pn be the number of variables which
may depend on n. We consider a regression problem with matrix of experiment
X of dimension n× (Pn+1) and a binary response vector Y . Rows x′i,· of X are
thus transposed observations and its columns x·,j contain predictors’ values. The
first column of X consisting of ones corresponds to the intercept. We assume that
observations pertain to the standard logistic regression model with probability
of success given observation xi,· described by formula

P(Yi = 1|xi,·) =
1

1 + exp(−β0xi,·)

where β0 = (β0,0, β0,1, ..., β0,Pn
) is (Pn+1)-dimensional vector of true coefficients.

We denote by s0 the minimal true model {j : β0,j 6= 0}. The conditions we impose
later imply that s0 is identifiable. We assume that the minimal true model always
contains intercept i.e 0 ∈ s0.

We consider the problem of constructing selectors of s0 incorporating Gen-
eralized Information Criterion (cf [3]) with objective function

GIC(s) = −2ln(β̂(s), Y |X(s)) + an|s|,
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where s is a given submodel containing |s| explanatory variables and an intercept,
β̂(s) is a maximum likelihood estimator calculated for model s (augmented by
zeros to (Pn+1)-dimensional vector if necessary), X(s) is a matrix of experiment
restricted to columns from s and an is a chosen penalty. Specific values of penalty
term lead to popular selection criteria such as Bayesian Information Criterion
(BIC) with an = log(n) or Akaike Information Criterion (AIC) with an = 2.
It was established (cf [4]) that both of this criteria tend to choose too many
predictors in the case when number of potential predictors is large. Therefore,
in the last few years number of Information Criteria with penalty larger than
log(n) have been proposed. In [5] generalization of BIC called Extended BIC
(EBIC) with penalty an = log n + 2γ logPn for some γ ≥ 0 is considered. It
stems from putting a certain non-uniform prior on family of models. Note that
EBIC penalty depends on the number of potential predictors and is of order
logPn when Pn is of a higher order than n.

Selection procedure based on GIC involves looking for a subset ŝ0 which min-
imizes GIC objective function over predefined family of modelsM. We consider
M = {s : |s| ≤ kn} with threshold kn which may depend on n. This selec-
tion method in the case of kn = k was introduced in [5] for the linear models
and extended in [1] to the case of the generalized linear models (GLMs). In [2]
properties of this selection method restricted to the standard logistic regression
model were studied under two assumptions: Sparse Riesz Condition (SRC) for
both Hessian matrix of loglikelihood function and experimental matrix and as-
sumption of uniform continuity of the Hessian. Here we generalize and improve
these results. We prove a nonasymptotic bound on the probability of erroneous
selection from which selection consistency follows under certain relations be-
tween the minimal eigenvalue of a moment matrix, norms of observations and
GIC penalty.

The paper is organized as follows. In Section 2 we introduce preliminaries
and in Section 3 we state and prove the main results. In Section 4 numerical
experiments are discussed.

2 Preliminaries

We partition all models including intercept of size not exceeding kn into two
disjoint families

A0 = {s : |s| ≤ kn ∧ s ⊇ s0}

and its complement

A1 = {s : |s| ≤ kn ∧ s 6⊇ s0 ∧ 0 ∈ s}.

Let p(t) = 1/(1 + exp(−t)) and σ2(t) = p(t)(1− p(t)). For the standard logistic
regression with logit link function, conditional likelihood for a given model s ∈
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A0 ∪ A1 and parameter β ∈ R|s|+1 is

l(β, Y |X(s)) =

n∑
i=1

{yi log[p(x′i,·(s)β)] + (1− yi) log[1− p(x′i,·(s)β)]}

=

n∑
i=1

{yix′i,·(s)β − log[1 + exp(x′i,·(s)β)]},

where X(s) stands for the design matrix X restricted to the columns from s and
x′i,·(s) is the i-th row of this matrix.
We denote by β(s) |s|-dimensional vector augmented by zeros to higher-dimensional
vector when necessary. The maximum likelihood estimator (ML) β̂(s) of param-
eter β0(s) is defined as

β̂(s) = arg max
β∈R|s|+1

l(β, Y |X(s)).

Define also the score function

Sn(β) =
∂l(β, Y |X)

∂β
=

n∑
i=1

[yi − p(x′i,·β)]xi,· = X ′(Y − p(β)), (1)

where p(β) = (p(x′1β), . . . , p(x
′
nβ))

′. The negative Hessian matrix will be de-
noted by

Hn(β) = −
∂2l(β, Y |X)

∂β∂β′
=

n∑
i=1

σ2(x′i,·β)xi,·x
′
i,· = X ′Π(β)X, (2)

where Π(β) = diag{σ2(x′1,·β), . . . , σ
2(x′n,·β)}.

Define
λ̃min = min

s∈A1

λmin(X
′(s ∪ s0)X(s ∪ s0)),

N = max
i=1,2,...,n

||xi,·(s0)||,

Ñ = max
s∈A1

max
i=1,2,...,n

||xi,·(s ∪ s0)||.

Results of the paper are proved under certain assumptions involving relations
between the three quantities above and penalty an.

3 Main results

We assume throughout that Pn > 2 for every n.

Lemma 1 Let Y = (y1, . . . , yn)
′ be a vector consisting of independent binary

variables having not necessarily the same distribution and

A(s) = X(s ∪ s0)[X
′(s ∪ s0)X(s ∪ s0)]

−1X ′(s ∪ s0)
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for s ∈ A0 ∪A1. Then for every ε > 0 and c(ε) = 0.5(4ε−
√
9 + 8ε+ 3) > 0 the

following inequalities hold for all n

P(max
s∈A1

||A(s)(Y − EY )||2 > (
5

4
+ ε)(kn + |s0|) logPn) ≤ P−c(ε)(kn+|s0|)

n . (3)

P(max
s∈A0

||A(s)(Y − EY )||2 > (
5

4
+ ε)(kn) logPn) ≤ P−c(ε)knn . (4)

P( max
s∈A0,s6=s0

[||A(s)(Y −EY )||2−(5
4
+ε)(|s|−|s0|) logPn] > 0) ≤ exp(P−c(ε)n )−1.

(5)

Proof

First we prove inequality (3). Since A(s) is an idempotent matrix for any s, we
have trA2(s) =trA(s) = |s ∪ s0| and λmax(A(s)) = 1. It follows from Theorem
2.1 in [6] that

P (||A(s)(Y − EY )||2 > 1

4
(tr(A(s)) + 2

√
tr(A2(s))t+ 2λmax(A(s))t)) < e−t.

Let t = (1+ c(ε))(kn+ |s0|) logPn. Note that
√

1 + c(ε) =
√
2ε+ 9/4−1/2. We

have

P(max
s∈A1

||A(s)(Y − EY )||2 > (
5

4
+ ε)(kn + |s0|) logPn)

= P(max
s∈A1

||A(s)(Y − EY )||2 > 1

4
(1 + 2

√
1 + c(ε) + 2(1 + c(ε)))(kn + |s0|) logPn)

≤
kn∑
j=1

(
Pn
j

)
max
s:|s|=j

P (||A(s)(Y − EY )||2

>
1

4
(kn + |s0|+ 2(kn + |s0|)

√
(1 + c(ε)) logPn + 2(1 + c(ε))(kn + |s0|) logPn))

≤ exp(−(1 + c(ε))(kn + |s0|) logPn)
kn∑
j=1

(
Pn
j

)

≤ exp(−(1 + c(ε))(kn + |s0|) logPn)
kn+|s0|∑
j=1

P jn
j!

≤ exp(−(1 + c(ε))(kn + |s0|) logPn)
P
kn+|s0|
n

(kn + |s0| − 1)!
≤ P−c(ε)(kn+|s0|)

n .

For the last two inequalities we use an
(
n
k

)
≤ nk/k! and the fact that sequence

nk/k! is non decreasing for fixed n and k = 1, 2, ..., n.
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Proof of inequality (4) is similar. In order to prove (5) change t in the reasoning
above to t = |s| logPn and note that

kn∑
j=|s0|

(
Pn
j

)(
exp(−(1+ c(ε)) logPn)

)j ≤ (1+
1

P
1+c(ε)
n

)Pn − 1 ≤ exp(P−c(ε)n )− 1.

Remark 1 If the number of variables Pn is constant, Lemma 1 does not give
a suitable bounds on considered probability. In such a case we use a slightly
modified version of the Lemma. For Pn = P we set kn = P . Let f = {0, 1..., P}
be a full model and 2f be a set of all possible models. In the considered setting
for n > P and any constant M ≥ P we have

P( max
s∈2f ,0∈s

||A(s)(Y − EY )||2 > 5

4
M) = P (||A(f)(Y − EY )||2 > 5

4
M)

≤ P(||A(f)(Y − EY )||2 > 1

4
(P + 2

√
PM + 2M)) < e−M

and

P( max
s∈A0,s6=s0

[||A(s)(Y − EY )||2 − 5

4
(|s| − |s0|)M ] ≥ 0)

≤ P(||A(F )(Y − EY )||2] ≥ 5

4
M) ≤ e−M .

In order to ensure that the minimal true model is selected with a large probability
we need to find conditions under which the behaviour of ln(β̂(s))− ln(β̂0(s)) can
be controlled uniformly over s ∈ A1 and s ∈ A0 \ {s0}. This will be done using
the following notion. For a given s ∈ A0 ∪ A1 define

B(s, r) = {β : ||X(s ∪ s0)(β(s)− β0(s))||2 ≤ r2}. (6)

Lemma 2 and Theorem 2 state conditions under which β̂(s) ∈ B(s, r) for s ∈ A0

whereas for s ∈ A1 we have β̂(s) 6∈ B(s, r). Define

B = {∀s ∈ A0 β̂(s) ∈ B(s,

√
λ̃min

Ñ
)}. (7)

Lemma 2 For all n such that inequality√
λ̃min

Ñ
exp(−N ||β0||) ≥ e

√
(80 + 64ε)kn logPn (8)

holds, we have
P (B) ≥ 1− exp(−c(ε)kn logPn).
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Proof

It is easily seen that β ∈ B(s, r) can be represented as β0(s)+γ(X
′(s)X(s))−

1
2u

where γ ∈ [0, r] and u is a vector with ||u|| = 1. For any index i, s ∈ A0 and
β ∈ B(s, r) we have

σ2(x′i,·β) = σ2(x′i,·β0 + γx′i,·(X(s)′X(s))−
1
2u)

≥ σ2(||x′i,·(s0)|| · ||β0||+ r
√
x′i,·(X(s)′X(s))−1xi,·)

≥ σ2(||x′i,·(s0)|| · ||β0||+ r||x′i,·(s)||/
√
λmin(X(s)′X(s)))

≥ σ2(N ||β0||+ rÑ/

√
λ̃min).

Let βu = β0 + r(X(s)′X(s))−
1
2u for some u such that ||u|| = 1. Note that βu is

a boundary point of B(s, r). Using concavity of ln(·) we have

P (∃s ∈ A0 β̂(s) /∈ B(s,

√
λ̃min

Ñ
)) ≤ P (∃u : ||u|| = 1,max

s∈A0

ln(βu) ≥ ln(β0))

and the bound above is in its turn not larger than

P (∃u : ||u|| = 1,max
s∈A0

[
u′(X(s)′X(s))−

1
2X(s)′(Y − EY )

−1

2
ru′(X(s)′X(s))−

1
2H(β∗)(X(s)′X(s))−

1
2u
]
≥ 0)

≤ P (max
s∈A0

||A(s)(Y − EY )|| ≥ 1

2
rσ2(N ||β0||+ rÑ/

√
λ̃min))

≤ P (max
s∈A0

||A(s)(Y − EY )|| ≥ 1

8
r exp(−N ||β0|| − rÑ/

√
λ̃min))

for some β∗ belonging to the line segment between βu and β0. We used the
fact that the scalar product u′v for a given vector v and ||u|| = 1 is maxi-
mized by u = v/||v||. The last inequality follows from the fact that σ2(t) =

e−|t|/(1 + e−|t|)2 ≥ 0.25e−|t|. For r =
√
λ̃min/Ñ by Lemma 1 the right hand

side is bounded from above by exp(−c(ε)kn logPn) if inequality (8) is satisfied.

Theorem 1 For all n such that inequality (8) and

an ≥ (5 + 4ε)e logPne
N ||β0|| (9)

hold simultaneously, we have

P ( min
s∈A0,s6=s0

GIC(s) ≤ GIC(s0)) ≤ P−c(ε)knn + exp(P−c(ε)n )− 1
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Proof
Let s ∈ A0. For some β∗ being a vector belonging to the line segment with
endpoints β̂(s) and β0(s) we have

ln(β̂(s))− ln(β̂0(s)) ≤ ln(β̂(s))− ln(β0(s))

= [β̂(s)− β0(s)]
′Sn(β0(s))−

1

2
[β̂(s)− β0(s)]

′Hn(β
∗)[β̂(s)− β0(s)].

From convexity β∗ ∈ B(s, r) and on event B defined by (7) we have in view of
the proof of Lemma 2 that σ2(x′i,·β

∗) ≥ σ2(N ||β0||+ 1) for any i. On the event
B we also have

β̂(s)− β0 = γs(X
′(s)X(s))−

1
2u′s

for some γs ∈ [0, r] and vector us with ||us|| = 1. This implies that on B

ln(β̂(s))− ln(β̂0(s)) ≤ γs||(X ′(s)X(s))−
1
2X(s)′(Y − EY )|| − 1

2
γ2
sσ

2(N ||β0||+ 1)

≤ ||(X
′(s)X(s))−

1
2X(s)′(Y − EY )||2

2σ2(N ||β0||+ 1)
=
||A(s)(Y − EY )||2

2σ2(N ||β0||+ 1)

Therefore,

P ( min
s∈A0,s 6=s0

GIC(s) ≤ GIC(s0))

= P( max
s∈A0,s6=s0

(ln(β̂(s))− ln(β̂(s0))−
(|s| − |s0|)an

2
) ≥ 0)

≤ P( max
s∈A0,s6=s0

[||A(s)(Y − EY )||2 − (|s| − |s0|)anσ2(N ||β0||+ 1))] ≥ 0)

≤ P( max
s∈A0,s6=s0

[||A(s)(Y − EY )||2 − (|s| − |s0|)an exp(−N ||β0||)
4e

] ≥ 0).

By Lemma 1 the last expression is bounded from above by exp(P
−c(ε)
n )−1 if con-

dition (9) is satisfied. Since it follows from Lemma 2 that P (B) ≤ exp(−c(ε)kn logPn)
the last step is to use inequality P (C) ≤ P (C ∩B) + P (B′) for
C = {mins∈A0,s6=s0 GIC(s) ≤ GIC(s0)}.

Theorem 2 Let βmin = mini∈s0 |β0,i|. Fix η ∈ (0, 1). For all n such the follow-
ing inequalities hold

Ñβmin > 1 (10)

η

4e

λ̃min

Ñ2
e−N ||β0|| ≥ an (11)

and

(1− η)
√
λ̃min

Ñ
e−N ||β0|| ≥ e

√
(80 + 64ε)(kn + |s0|) logPn (12)
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we have
P (min

s∈A1

GIC(s) ≤ GIC(s0)) ≤ P−c(ε)(kn+|s0|)
n

Proof

Consider set B(s, r) defined in (6) for r =
√
λ̃min/Ñ and s ∈ A1. Note that,

||X(s∪s0)(β(s)−β0(s))|| ≥
√
λmin(X ′(s ∪ s0)X(s ∪ s0))||β(s)−β0(s)|| ≥

√
λ̃minβmin.

Thus if r < βmin
√
λ̃min then β̂(s) 6∈ A1 and the last inequality is satisfied in

view of (10). Using concavity of ln(·) again we have

P (min
s∈A1

GIC(s) ≤ GIC(s0))

≤ P (max
s∈A1

ln(β̂(s))− ln(β0) ≥ −
an
2
)

≤ P (∃u : ||u|| = 1max
s∈A1

ln(βu)− ln(β0) ≥ −
an
2
)

≤ P (∃u : ||u|| = 1,max
s∈A1

(u′(X(s ∪ s0)
′X(s ∪ s0))

− 1
2X(s ∪ s0)

′(Y − EY )

−1

2
ru′(X(s ∪ s0)

′X(s ∪ s0))
− 1

2H(β∗)(X(s ∪ s0)
′X(s ∪ s0))

− 1
2u) ≥ −an

2r
)

≤ P (max
s∈A1

||A(s)(Y − EY )|| ≥ 1

2
rσ2(N ||β0||+

Ñ√
λ̃min

r)− an
2r

)

≤ P (max
s∈A1

||A(s)(Y − EY )|| ≥ 1

8e
r exp(−N ||β0||)−

an
2r

)

≤ P (max
s∈A1

||A(s)(Y − EY )|| ≥ 1− η
8e

r exp(−N ||β0||))

where (11) is used for the last inequality. By Lemma 1 the last probability is
bounded from above by exp(−c(ε)(kn + |s0| logPn) if

1− η
8e

r exp(−N ||β0||) ≥
√
(
5

4
+ ε)(kn + |s0|) logPn

which is equivalent to (12).

Corollary 1 It follows from Theorems 1 and 2 that for all n such that inequal-
ities (9) (10), (11),(12) hold for some η ∈ (0, 1) and ε > 0, we have

P ( min
s∈A0∪A1,s6=s0

GIC(s) ≤ GIC(s0)) ≤ 2P−c(ε)(kn+|s0|)
n + exp(P−c(ε)n )− 1.
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Remark 2 Write wn << zn if wn = o(zn) for n → ∞. It follows from Theo-
rems 1 and 2 that if

1 << Ñ (13)

kn logPn <<
λ̃min

Ñ2
e−2N ||β0|| (14)

and

eN ||β0|| logPn << an <<
λ̃min

Ñ2
e−N ||β0|| (15)

we have
P ( min

s∈A0∪A1,s6=s0
GIC(s) ≤ GIC(s0))→ 0

when n tends to infinity.

Remark 3 If number of variables P is constant we use in Lemma 2 and Theo-
rems 1 and 2 inequalities from Remark 1. This leads to the following conditions
for consistency of GIC. If condition (13) is satisfied and

eN ||β0|| << an <<
λ̃min

Ñ2
e−N ||β0|| (16)

we have
P ( min

s∈2f ,s 6=s0
GIC(s) ≤ GIC(s0))→ 0

where f and 2f are defined in Remark 1. Note that in considered case we have
λ̃min = λmin(X

′(f)X(f)) and Ñ = maxi=1,...,n ||xi,·||.
If condition (13) does not hold, then in the proof of Theorem 2 we take r =

A
√
λ̃min with A < βmin. This leads to the following conditions on consistency

of GIC. If

1 << an << λ̃min (17)

we have
P ( min

s∈2f ,0∈s,s6=s0
GIC(s) ≤ GIC(s0))→ 0.

4 Discussion of the assumptions

In this section we examine behavior of λ̃min, Ñ and N when design matrix has
some specific structure. We find the following lemma useful. It is a version of
Preposition 1 in [7] for unnormalized predictors.

Lemma 3 Let ρij = x′·,ix·,j. The following inequality holds

λ̃min ≥ min
j
ρjj − max

|s|=kn
inf
α>1

[ ∑
i∈s∪s0

( ∑
j∈s∪s0\{i}

|ρij |α/(α−1)

)α−1]1/α

. (18)
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Since all the matrices X ′(s ∪ s0)X(s ∪ s0) are positively defined, the lemma is
nontrivial if the right hand side of (18) is positive.

Proof

Fix s such that |s| ≤ kn and denote by j1, j2, ..., j|s∪s0| elements of s ∪ s0. Let
b(s ∪ s0) = b = (bj1 , ..., bj|s∪s0|)

′ be an eigenvector of X ′(s ∪ s0)X(s ∪ s0) corre-
sponding to its minimal eigenvalue λmin(s ∪ s0) = λmin. From the definition of
eigenvector for any j ∈ s ∪ s0 we have∑

i∈s∪s0

ρjibi = λminbj .

Therefore by Hölder’s inequality

min
j=1,...,p

|λmin − ρjj |α
∑

j∈s∪s0

|bj |α ≤
∑

j∈s∪s0

|(λmin − ρjj)bj |α

=
∑

j∈s∪s0

∣∣∣∣ ∑
i∈s∪s0\{j}

ρjibi

∣∣∣∣α ≤ ∑
j∈s∪s0

( ∑
i∈s∪s0\{i}

|ρij |α/(α−1)

)α−1 ∑
i∈s∪s0

|bi|α.

Let δ = max|s|=kn infα>1

[∑
i∈s∪s0

(∑
j∈s∪s0\{i} |ρij |

α/(α−1)

)α−1]1/α

. After

dividing both sides by
∑
i∈s∪s0 |bi|

α we obtain minj |λmin − ρjj | ≤ δ which im-
plies that λmin ≥ minj ρjj − δ. Since the right hand side does not depend on
choice of s the lemma is proved.

Let
ρn = max

i 6=j
|ρij |, τn = min

j
||x·,j ||, Mn = max

i=1,...,n;j=1,...,Pn

|xij |.

Then (18) and Schwarz inequality implies√
λ̃min

Ñ
exp(−N ||β0||) >

√
τ2
n − (kn + |s0|)ρn√
kn + |s0|Mn

exp(−
√
s0Mn||β0||).

The lower bound is positive if ρn < τ2
n/kn and the inequality (8) holds if

τ2
n − (kn + |s0|)ρn > e2(80 + 64ε)(kn + |s0|)2 logPnM2

n exp(2
√
s0Mn||β0||).

The assumption frequently used in the literature is Sparse Riesz Condition (SRC)
see e.g. [7]. We say that the design matrix X satisfies left-sided SRC with rank
kn and a spectrum bound 0 < C1 < +∞ if

∀s : |s| ≤ kn ∀v ∈ R|s| C1 ≤
||X(s)v||2

n||v||2

which is equivalent to

min
s:|s|≤kn

λmin(X
′(s)X(s)) ≥ C1n
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Corollary 2 Assume that matrix X satisfies left-sided SRC with rank kn + |s0|
and constant C1. For all n such that

e2(80 + 64ε)M2
n(kn + |s0|)2 logPn exp(2

√
s0Mn||β0||) < C1(1− η)2n (19)

1 < C1knβ
2
min (20)

(5 + 4ε) exp(Mn
√
s0||β0||) logPn < an <

ηC1n

4e(kn + |s0|)M2
n

exp(−Mn
√
s0||β0||)

(21)
hold for some η ∈ (0, 1), we have

P ( min
s∈A0∪A1,s6=s0

GIC(s) ≤ GIC(s0)) ≤ 2P−c(ε)(kn+|s0|)
n + P−c(ε)n .

Note that if Mn ≤M , inequality (19) reduces to

n > A(kn + |s0|)2 logPn with A =
e2(80 + 64ε)M2 exp(

√
s0M ||β0||)

C1(1− η)2

and inequality (21) reduces to

B1 logPn < an < B2
n

kn + |s0|

with B1 = (5 + 4ε) exp(M
√
s0||β0||) and B2 =

ηC1

4eM2
exp(−M

√
s0||β0||).

Proof

We show that conditions (19)-(21) imply assumptions of Corollary 1. Left-sided
SRC with rank kn + |s0| implies that for fixed s with |s| ≤ kn, we have

C1n ≤ λmin(X ′(s ∪ s0)X(s ∪ s0)) ≤
1

|s ∪ s0|
tr(X ′(s ∪ s0)X(s ∪ s0))

=
1

|s ∪ s0|

n∑
i=1

||xi,·(s ∪ s0)||2 ≤
n

|s ∪ s0|
max

i=1,...,n
||xı,·(s ∪ s0)||2.

Thus, when left-sided SRC is satisfied and all absolute values of design entries
xij are bounded from above by Mn the inequality (12) holds for some η ∈ (0, 1)
if

n > AM2
n(kn + |s0|)2 logPn exp(2

√
s0Mn||β0||) with A =

e2(80 + 64ε)

C1(1− η)2
.

Analogously, inequality (19) implies (12). Moreover, the string of the inequalities
above implies that√

kn + |s0|Mn ≥ Ñ ≥ C1

√
kn + |s0| and

√
|s0|Mn ≥ N ≥ C1

√
|s0|

which shows that (9) and (12) follow from (21) and (20) implies (10).
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5 Simulation study

In this section we compare different methods of variable selection for high-
dimensional logistic regression. We give detailed description of the experiment,
its results and conclusions.

We perform simulations for 4 artificially generated data sets described in
Table 1. Number of observations is equal to 100 for the first data set and it is
increased by 80 for every subsequent data set. Number of variables is a function
of n given by

⌊
exp((n− 20)0.37)

⌋
and number of relevant variables vary from 3

for the first data set to 6 for the last one. Vector of true coefficients β0 is equal
to (−3.5, 1.5,−2) for the first data set and is augmented alternately by -2 or 2
for each new relevant variable. The same setting is considered in [8].

For each data set we consider three different dependence structures be-
tween variables, namely observations are generated independently from mul-
tivariate normal distribution with zero mean and covariance matrix Σ with
Σ(i, j) = ρ|i−j| for ρ = −0.5, 0, 0.5.

Due to computational burden we cannot directly optimize GIC for all subsets
of variables containing no more than kn variables even if kn is relatively small.
Hence, we perform two-stage procedure to find minimal true model. In the first
stage we screen moderate number of valuable variables and in the second one we
optimize GIC on some subfamily of models consisting of this chosen variables
only. There are many statistical procedures such as LASSO, SCAD, Dantzig Se-
lector or Random Forests, which results in ordering variables according to some
measure of importance and so can be used as screening methods. In the exper-
iment we order variables according to LASSO for GLM. The most important
variable is the one for which corresponding coefficient became nonzero for the
largest value of penalty parameter in the LASSO objective function.

We compare three searching procedures: hierarchical (denoted by hier), ex-
haustive (exh) and semi-exhaustive (semexh). Hierarchical procedure involves
minimization of GIC objective function on the nested family of 40 variables cho-
sen in the first step. Since we take into account an empty model- intercept only
model- the number of fitted models is 41. In exhaustive procedure we minimize
GIC objective function on the family of all submodels of 10 variables chosen
by LASSO. The number of fitted models is 1024. Semi-exhaustive method is a
version of step forward algorithm with different stop condition. First we fit 40
models, one for each variable chosen by LASSO. Then we choose the best one,
so the one witch minimize GIC. Next step is to fit 39 models with two variables-
the one chosen previously and each remaining one. We chose the best pair of
variables and proceed. The last fitted model is a full model. Including an empty
model, we fit

(
41
2

)
+ 1 = 821 models.

In the first part of the experiment we examine quality of LASSO for GLM
as a screening method in considered scenarios. Figure 1 shows estimated proba-
bility that after initial screening relevant variables are separated from spurious
ones for given values of ρ. This is equivalent to saying that minimal true model
s0 belongs to the nested family of 40 most important variables. We see that
values differ significantly. In the easiest case, for ρ = −0.5 estimated probability
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is nearly equal to 1 whereas in the most difficult case, for ρ = 0.5 it occurs to
be nearly 0.

In the second part we compare searching procedures by taking into account
probability of selecting s0 and selection error. We use EBIC penalty with γ = 1
which was chosen as the best value in preliminary simulations. The estimated
probability of selecting s0 is shown in Figure 2. In the easiest case for ρ = −0.5
hierarchical method works significantly better than remaining two. However, for
independent predictors when ordering after first step is of lower quality, exhaus-
tive and semi exhaustive methods are superior to hierarchical one. The tendency
is even stronger for positively correlated variables. When LASSO fails in ordering
variables semi exhaustive method appears to be the best. In this case probability
of selecting s0 by hierarchical method is close to 0.

We measure error of each searching procedure by mean sum of false positives
(FP) and false negatives (FN). Let sj a set of features chosen in the j-th run.
The measure is given by

FP + FN =

∑N
j=1 |(sj ∪ s0) \ (sj ∩ s0)|

N
.

Figure (3) shows the result. Conclusions are in line with those from Figure (2).
The case of independent variables is the only one when with growth of n error
systematically decreases. For negative ρ we see again dominance of hierarchical
method with error varying from 0.6 to 0.8. For positive ρ all methods work worse,
with error close to the number of relevant variables. Although in this case the
best method is semi exhaustive one.

Model |s0| n p =
⌊
exp((n− 20)0.37)

⌋
β0(s0)

1 3 100 158 (-3,1.5,-2)
2 4 180 692 (-3,1.5,-2,2)
3 5 260 1993 (-3,1.5,-2,2,-2)
4 6 340 4680 (-3,1.5,-2,2,-2,2)

Table 1: Model specifications.
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Fig. 1: Estimated probability that all relevant variables proceed the spurious ones
after screening for ρ = −0.5, 0, 0.5.
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Abstract.
Since 1990s the development of linguistic methods based on the distri-
butional hypothesis has lead to significant achievements in extraction of
word semantics from large corpora of texts in natural language. To date,
there was no attempt made to apply algorithms of distributional seman-
tics on biological data, despite many other successful method transfers
between linguistic engineering and bioinformatics. Therefore, we con-
structed a distributional word-context matrix based on protein sequence
data, making an analogy between words in natural language and single
amino acids in proteins as most basic carriers of information. Our com-
putational approach is inspired by the linguistic method of Correlated
Occurrence Analogue to Lexical Semantics. In order to achieve our goal
we also build a balanced set of protein sequences, as analogy to balanced
text corpora in linguistics. The matrices which we obtained achieve corre-
lations of up to 0.76 with amino acid substitution matrices. Substitution
matrices are a widely used model of amino acid relationships, built us-
ing multiple sequence alignments and evolutionary data and useful in
proteomics for sequence alignments. Our result suggests the potential to
extract information about amino acids by purely statistical analysis of
protein data. However, contrary to results in linguistic engineering, we
obtain slightly higher correlation scores for matrices modelling simple
tendency to co-occur than for matrices which model the more complex
relationship of amino acids based on context.

1 Introduction

1.1 Linguistic distributional semantics

Linguistic distributional semantics is a part of a broader domain referred to as
vector space models of semantics. This wide area aims at inferring word meaning
from the statistical patterns of word usage in language. The foundations of the
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field are build on theories like the bag of words hypothesis, the latent relation
hypothesis or the distributional hypothesis [1]. The last one of them lies within
the interest of our work. Distributional hypothesis states that the meaning of
a word can be discovered by observation of the contexts in which the word
occurs. Possibility of such inference is especially useful for detecting semantic
similarity of words. It was already in 1950s that the Distributional Hypothesis
was proposed [2]. However, it had to wait until the advent of computational
methods in linguistic engineering before it could be applied on a larger scale.

The first proposed algorithm which used this hypothesis is Hyperspace Ana-
logue to Language (HAL) [3]. It served its authors to construct some of the
first word semantic spaces, also called matrices of semantic relatedness [4]. HAL
method also established the four main steps which till now are the main ingre-
dients of distributional semantics procedures. These steps are:

1. Gathering and preparing the text corpus which will serve as the experimental
base. Linguists pay special attention to this stage and try to build balanced
corpora. A balanced corpus includes texts from diverse sources: spoken lan-
guage, books, newspapers, letters etc. An example of a balanced corpus is
the balanced version of the National Corpus of Polish [5].

2. Processing the text corpus with a sliding window in order to obtain a co-
occurrence count matrix. Sliding windows can vary in size, can be ramped
or flat.

3. Post-processing of the obtained co-occurrence matrix, which at least should
involve normalization, yet it may contain more advanced transformations or
dimensionality reduction.

4. Establishing a similarity measure between the word-vectors described in the
finally obtained matrix.

Soon after HAL appeared the better-known Latent Semantic Analysis (LSA)
[6], yet it was a move from word-context model to word-document model. On
the other hand, a continuation and extension of the HAL’s word-context ap-
proach was proposed in the Correlated Occurrence Analogue to Lexical Seman-
tics (COALS) model [7]. Concepts from the COALS algorithm were the most
inspirational for our work. Supplement A presents an extract of our previous
work: an example of word similarity results obtained with use of COALS method
in a study of word synonymy for Polish language.

Nowadays, vector space models of semantics are a well developed domain
with many successful applications. They are also easy to use, as there are many
available text corpora and dedicated software packages [8].

Our experience of work with linguistic distributional semantics lead us in our
daily bioinformatics research to an attempt to apply similar techniques in order
to model relationships (semantics) between amino acids.

1.2 Amino acid relationship modelling

Modelling differences between amino acids is an important task for proteomics.
Whether we want to extract features for machine learning from amino acid
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sequences or whether we attempt to align several proteins in order to reason
about their common traits, we need to be able to quantitatively compare amino
acids to each other. Several resources are available for such tasks. Many of them
are gathered in the AAIndex Database [9]. Two types of such resources which
we would like to cover are:

Amino acid indices - These are mostly physicochemical properties with spe-
cific values for each amino acid. They can relate to hydrophobicity, com-
positional properties, structural propensity, electric properties and others.
Indices are useful, for example, in the task of feature extraction from protein
sequences [10]. Their abundance might pose a challenge, yet this is often
addressed with clustering or feature selection methods [11].

amino acid index : AA→ R

Equation 1: Amino acid indices - functions returning values of physicochemical
attributes for each amino acid. Below AA is the set of amino acids, and R is the
set of real values.

Substitution (or mutation) matrices - The idea behind them comes from
the need to align protein sequences with each other. Before their appear-
ance, alignment scoring algorithms counted sequence matches or mismatches
equally - not taking into account which particular amino acids are compared.
Later on, based on the observation that some amino acids are more likely to
mutate than others (and also mutate to specific targets), biologists started
to differently rate the proximity of protein sequences. To establish the sub-
stitution scores, scientist relied on analysis of multiple alignments. In PAM
aligned were evolutionary similar proteins [12], while in BLOSUM alignment
focused on very conserved regions in distant proteins [13]. Other methods
were also designed, yet these two substitution matrices are one of the most
popular and are commonly used in the popular BLAST program [14].

substitution matrix : AA×AA→ R

Equation 2: Substitution matrices - functions returning evolutionary/chemical
similarity/dissimilaity scores for pairs of amino acids. Below AA is the set of
amino acids, and R is the set of real values.

Substitution matrices in proteomics serve similar purpose as semantic spaces
in linguistic. They rate proximity of, respectively, amino acids and words. How-
ever, both methods are based on a very different approach. In our work we de-
cided to apply the methods of distributional semantics to proteins, thus building
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an amino acid semantic space. We base this approach on the analogy between
words and amino acids - both are the basic units carrying information in their
domains and both occur in large sequences that can be studied statistically.

2 Method and materials

2.1 Protein corpus preparation

As we mentioned in section 1.1, an important step of every linguistic engineering
experiment is careful preparation of a text corpus. Therefore, we decided to pay
special attention to this step in our biological experiment. Taking just a full
set of proteins from a database like UniProt might have biased the results, as
proteins in different domains are not equally well researched. For some types
of organisms or some functional types of proteins we have much more objects
sequenced than in other areas.

In order to obtain a balanced protein set we utilized UniProt20 database
which was developed in the HHblits package [15]. UniProt20 is a clustered set of
proteins from UniProt. It was constructed using similarity threshold of 20%. To
build our protein corpus we took at maximum one sequence from each cluster of
UniProt20. However, we only accepted sequences that are marked in the origi-
nal UniProt as having experimental evidence at protein or transcript level [16].
Therefore, some UniProt20 clusters are not at all represented in our dataset.
Statistics of the protein corpus which we obtained are displayed in Table 2.1.

Number of sequences 347 409

Number of amino acids 101 966 845

Mean sequence length 293.5

Median sequence length 193.0

Table 1. Statistics of the obtained protein corpus.

In order to make sure that short, medium and long sequences are relatively
equally represented in our dataset we looked in detail into its composition from
the perspective of elements’ length, what is displayed in Figures 1 and 2. More-
over, Figure 3 presents the amino acid composition of our dataset.

2.2 Amino acid distributional matrix construction

Procedure which we used to construct our amino acid distributional matrix is
highly inspired by the COALS algorithm [7]. However, many of steps in COALS
are appropriate only for linguistic domain, thus we eliminated:
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Fig. 1. Number of sequences in the protein corpus per sequence length group

Fig. 2. Aggregated number of amino acids in the protein corpus per sequence length
group
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Fig. 3. Distribution of different amino acids in the protein corpus

– Dimensionality reduction, which is required in linguistics because of the huge
size of the matrix based on words and is also credited with performance
increase. Reduction of our 20 × 20 amino acid matrix does not seem to be
necessary, yet it might be worth checking in the future whether it would not
increase the final performance.
– Replacing negative correlation values with zeros. In linguistics this transfor-

mation step is explained by the fact that knowing a large set of words that
have negative correlation with a target word is not very helpful for infer-
ring the meaning of the target word. On the other hand, knowledge of just
a handful of words that correlate positively with the target word provides
a lot of insight into the target word’s semantics. For example, information
that an unknown word W has negative correlation with words: mountain,
swimming, colorful, multiple and clumsy is not very useful when we want to
infer the semantics of W . However, if we know that W correlates positively
with words: dog, lion and pet, than we know much more about its meaning.
Nevertheless, the world of amino acids is different. We cannot claim a priori
that negative correlation between amino acids is meaningless. Intuitively it’s
seems to be quite the opposite. Therefore, we keep negative correlation values
as equally valuable as positive correlations.

Therefore, our amino acid procedure consisted of the following steps:

1. Gathering co-occurrence counts in matrix of size 20 × 20 using a sliding
window. We used flat and ramped windows with radius 4,10 and 16, thus
obtaining 6 different matrices. Figure 2.2 shows how a ramped window of
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radius 4 counts co-occurrence scores. The size of our final matrix is 20× 20
as we decided to ignore all the non-standard amino acids as their number
was not big enough.

2. Co-occurrence matrix normalization with use of formula from Figure 3. The
formula should not be confused with correlation of two co-occurrence rows,
as it is instead a correlation between the occurrences of two amino acids [7].

3. Obtaining similarity score for two amino acids by calculating correlation
between their row-vectors. This step shifts the final results from looking at
pure co-occurrence likelihood of amino acids towards the representation of
their context similarity.

focus amino acid︷︸︸︷
Amino acids: (...) H P A T P P P K M V S V A (...)
Scores: - - 1 2 3 4 - 4 3 2 1 - -︸ ︷︷ ︸

window

Fig. 4. Co-occurrence scoring for a ramped window with radius 4 on an example protein
subsequence.

Di,j =

S ∗ Ca,b −
20∑
j

Ca,j ∗
20∑
i

Ci,b

(

20∑
j

Ca,j ∗ (S −
20∑
j

Ca,j) ∗
20∑
i

Ci,b ∗ (S −
20∑
i

Ci,b))
1/2

where

S =

20∑
i

20∑
j

Ci,j

Equation 3: Transforming raw co-occurrence counts (C matrix) into distribution-
based tendency to co-occur (D matrix) through normalization based on Pear-
son’s correlation coefficient. 20 is the number of basic amino acids, thus it de-
termines the dimensionality of matrices C and D.

2.3 Comparison with substitution matrices

The most intuitive idea for checking whether the information gathered in our
matrices does make biological sense is to compare them to substitution matrices.
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Following works on comparing biological matrix resources with each other, we
decided to use for this task a simple correlation of matrices flattened to rows, as
presented in Figure 4 [17]. For comparison we took all the 93 matrices available
in AAIndex2 Database [9]. It’s important to note, that substitution matrices
gathered in this resource are not all very different from each other, as this set
contains many variations of matrices built by the same algorithms. An example
of a substitution matrix is presented in Table 2.3.

For comparison with substitution matrices we did not only take our final
row similarity matrices, but we also performed calculations for matrices which
we obtain before performing step number 3 from procedure presented in section
2.2.

A 5
R -2 7
N -1 0 6
D -2 -1 2 7
C -1 -3 -2 -3 12
E -1 0 0 2 -3 6
Q -1 1 0 0 -3 2 6
G 0 -2 0 -1 -3 -2 -2 7
H -2 0 1 0 -3 0 1 -2 10
I -1 -3 -2 -4 -3 -3 -2 -4 -3 5
L -1 -2 -3 -3 -2 -2 -2 -3 -2 2 5
K -1 3 0 0 -3 1 1 -2 -1 -3 -3 5
M -1 -1 -2 -3 -2 -2 0 -2 0 2 2 -1 6
F -2 -2 -2 -4 -2 -3 -4 -3 -2 0 1 -3 0 8
P -1 -2 -2 -1 -4 0 -1 -2 -2 -2 -3 -1 -2 -3 9
S 1 -1 1 0 -1 0 0 0 -1 -2 -3 -1 -2 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -1 -1 2 5
W -2 -2 -4 -4 -5 -3 -2 -2 -3 -2 -2 -2 -2 1 -3 -4 -3 15
Y -2 -1 -2 -2 -3 -2 -1 -3 2 0 0 -1 0 3 -3 -2 -1 3 8
V 0 -2 -3 -3 -1 -3 -3 -3 -3 3 1 -2 1 0 -3 -1 0 -3 -1 5

A R N D C E Q G H I L K M F P S T W Y V

Table 2. Example of a substitution matrix: BLOSUM45 substitution matrix (Henikoff-
Henikoff, 1992). Missing values above the diagonal indicate that the matrix is symmet-
ric. Please note that not all substitution matrices are symmetric.

3 Results and discussion

Our amino acid distributional matrices obtain surprisingly high correlations with
the substitution matrices, e.g. 0.76 with matrix built by Koshi et al, 0.64 with
BLOSUM45 or 0.51 with PAM120. It’s especially interesting as our matrices
are built using a very different paradigm. Distributional amino acid matrices
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c =

N∑
i

N∑
j

(Di,j − D̄)(Si,j − S̄)

(

N∑
i

N∑
j

(Di,j − D̄)2
N∑
i

N∑
j

(Si,j − S̄)2)1/2

Equation 4: Matrix correlation by flattening matrices to vectors. D - distribu-
tional amino acid matrix. S - substitution matrix.

are based on vertical analysis of protein sequences and they do not use any
external knowledge about evolutionary relationships between proteins. On the
other hand, most of the substitution matrices rely on horizontal analysis of
protein multiple alignments and incorporate evolutionary information into their
methodology. Also notable is the result of 0.73 correlation with a substitution
matrix based on amino acid chemical properties [18]. These results show that
it is possible to extract meaningful knowledge about amino acids from pure
statistical analysis of protein sequences.

However, it’s important to note that, contrary to the results in linguistic
applications, better ”performance” is achieved by distributional matrix built
without the step 3 presented in method from section 2.2. This means that more
related to substitution matrices is the pure likelihood of amino acid co-occurrence
rather than semantic similarity driven by the context relationship.

Acknowledgements

The study is cofounded by the European Union from resources of the European
Social Fund. Project PO KL ”Information technologies: Research and their inter-
disciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00; Pol-
ish National Science Centre (grant numbers: 2015/16/T/ST6/00493,
2014/15/B/ST6/05082 and 2013/09/B/NZ2/00121); EU COST BM1405 and
BM1408 actions.

A Supplement: Example distributional semantics results
for Polish language

Tables in Figure A present an example of distributional semantics results for
Polish language. Usually, most valued and useful outcomes of these methods are
lists of words’ nearest neighbors, i.e. words having most similar vectors in the
semantic space to a given word. In the case of Figure A we see nearest neighbors
lists from space produced with COALS algorithm [7] run on the National Corpus
of Polish [5]. Results were produced for the project APPROVAL1, which was
aimed at analysis of synonym pairs. This is why we present neighbors lists for
two synonymous words [28].

1 http://www.approval.uw.edu.pl/start
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Substitution
matrix AAIn-
dex code

Correlation
with matrix
built without
step 3. from
section 2.2

Correlation
with matrix
built includ-
ing step 3.
from section
2.2

Substitution matrix description

KOSJ950102 0.76 0.58 Context-dependent optimal substitution
matrices for exposed beta [19]

OVEJ920105 0.75 0.58 Environment-specific amino acid substitu-
tion matrix for inaccessible residues [20]

LINK010101 0.75 0.58 Substitution matrices from a neural net-
work model [21]

MCLA720101 0.73 0.68 Chemical similarity scores [18]

CSEM940101 0.67 0.65 Residue replace ability matrix [22]

HENS920101 0.64 0.58 BLOSUM45 substitution matrix [13]

ALTS910101 0.51 0.47 The PAM-120 matrix [23]

AZAE970102 0.45 0.4 The substitution matrix derived from spa-
tially conserved motifs [24]

GEOD900101 0.33 0.33 Hydrophobicity scoring matrix [25]

RUSR970101 -0.01 0.04 Substitution matrix based on structural
alignments of analogous proteins [26]

GRAR740104 -0.43 - 0.41 Chemical distance [27]

Table 3. Correlation results (calculated according to Figure 4) of chosen substitution
matrices with amino acid distributional matrices based on co-occurrences calculated
by flat sliding window of radius 16.
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Kolarz

Similarity Neighbor

0.859 biegacz

0.783 kolarski

0.775 maratończyk

0.766 kajakarz

0.762 peleton

0.761 lekkoatleta

0.758 pływak

0.755 wyścig

0.744 zawodnik

0.736 rajdowiec

0.727 szosowy

0.726 szachista

0.719 zapaśnik

0.717 kolarstwo

0.716 jaskuła

0.707 olimpijczyk

Cyklista

Similarity Neighbor

0.767 motocyklista

0.761 rowerzysta

0.715 pieszy

0.705 rajdowiec

0.704 rowerowy

0.688 kolarz

0.683 jednoślad

0.668 rower

0.667 zmotoryzowany

0.661 rajd

0.647 motocyklowy

0.641 biegacz

0.638 quad

0.624 kolarski

0.624 motocykl

0.621 spacerowicz

Fig. 5. Example nearest neighbors lists from a COALS [7] semantic space con-
structed over National Corpus of Polish [5] in the course of project APPROVAL
(http://www.approval.uw.edu.pl/start).
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Abstract.
Uplift modeling is a relatively new branch of Machine Learning initially
used for marketing campaigns to determine their incremental impact. In
contrast to conventional classification methods, it does not predict the
response (or response probabilities) itself, but instead, the difference in
those probabilities resulting from this campaign. In other words, it aims
to model the causal effect of an applied action on a given individual. But
uplift modeling is not restricted only to marketing, the second straight-
forward application is controlled clinical trail. The main assumption here
is that our population is divided into two groups: treatment, where the
action was taken, and control, which plays the role of a background.
In this paper we present a modification of L1 Support Vector Machines
designed specifically for needs of uplift modeling. The standard SVM
optimization task has been reformulated in order to explicitly model the
difference in response behavior between treatment and control datasets.
The resulting model can make three different predictions on a given ob-
ject: whether the response to an applied action will be positive, neutral
or negative. Finally we compare nonlinear Uplift SVMs and demonstrate
their performance.

1 Introduction

Unlike the traditional classification methods like logistic regression or Support
Vector Machines, where the model predicts the conditional class probability
distribution, the uplift modelling aims at predicting the incremental response of
some investigated action. Standard classification methods focus entirely on the
effect after the action has been taken and do not take into account possibility of
not taking the action. And that is the idea behind the uplift modelling: it tries
to model what happens because of the action. To achieve this, uplift methods
require the dataset to be divided into two groups: the treatment group, where
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the action has been performed, and the control, used as a background, which
was not subject to this action.

The idea of uplift is the easiest to understand in the context of marketing
campaigns. In fact, customers who were subject to a given campaign and had
a positive outcome (bought some product) can be divided into two categories:
those who bought because they were induced and those who would have bought
it anyway. Of course, only the first group is really valuable from the marketers
point of view. Notice that traditional classification methods are unable to distin-
guish between those two groups. Moreover, an analogous division can be made on
clients with negative outcome, where we should pay special attention to detect
those, who did not buy because they were targeted (e.g they got annoyed). Mar-
keters, in all possible ways, should exclude this group from the campaign. Uplift
methods try to explicitly model the difference in outcome probabilities between
the control and treatment groups, hence they are able to predict whether the
result of the action will be truly positive, neutral or negative.

In this paper we describe a modification of Support Vector Machines designed
specifically for needs of uplift modeling. The resulting model handles two training
datasets and can make three different predictions on a given object: whether the
response to an applied action will be positive, neutral or negative. Moreover,
the kernel trick was applied in order to create nonlinear classifiers. In Section 4
we will experimentally compare the performance of a linear uplift SVM with its
nonlinear modifications, where polynomial and radial basis function kernels were
used.

1.1 Previous work

Surprisingly, uplift modeling has received relatively little attention in the liter-
ature. The most obvious approach uses two separate probabilistic models, one
built on the treatment and the other on the control dataset, and subtracts their
predicted probabilities. The advantage of the two-model approach is that it can
be applied with any classification model. Moreover, if uplift is strongly correlated
with the class attribute itself, or if the amount of training data is sufficient for
the models to predict the class probabilities accurately, the two-model approach
will perform very well also in the uplift case. The disadvantage is, that when
uplift follows a different pattern than the class distributions, both models will
focus on predicting the class, instead of focusing on the weaker ‘uplift signal’.
See [1] for an illustrative example.

A few papers addressed decision tree construction for uplift modeling. See
e.g. [2, 1]. In [3] uplift decision trees have been presented which are more in line
with modern machine learning algorithms. The approach has been extended to
the case of multiple treatments in [4].

Some regression techniques for uplift modeling are available. Most researchers,
however, follow the two model approach either explicitly or implicitly [5, 6]. In [7]
a method has been presented which makes it possible to convert a classical lo-
gistic regression model (or in fact any other probabilistic classifier) into an uplift
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model. The approach is based on a class variable transformation. Recent, thor-
ough literature overviews on uplift modeling can be found in [3] and [1].

Support Vector Machines with parallel hyperplanes, similar to our approach,
have been analyzed in the context of ordinal classification [8]; here the situation
is different as two training datasets are involved.

Recently another approach to Support Vector Machines applied to uplift
modeling has been published [9]. It is based on structured SVMs used to directly
maximize the area under uplift curves.

A preliminary version of this paper appeared in [10]. The current paper
extends that first version mainly with an application of kernels. All experiments
are focused on this issue. Moreover, the list of datasets under comparison has
been largely refreshed.

2 Classic Support Vector Machines algorithm

Before we move on to Uplift SVM, let us make a short revision of the linear
Support Vector Machines.

2.1 Linear SVM

The idea of Support Vector Machine (SVM) method was first introduced by
Vapnik, Chervonenkis and Lerner in early 60’s [11, 12]. Later, in 1992 Vapnik
with his team [13] suggested a way to apply the so-called kernel-trick to create
nonlinear classifiers and finally, in 1995, also Vapnik with Corinna Cortes [14]
introduced the most popular nowadays soft-margin approach.

We start with introducing the notation. Let us consider n-points training
sample D = {(xi, yi) : i = 1, . . . , n}, where xi ∈ Rm are the values of the
predictor variables and yi ∈ {−1, 1} is the class of the i-th data point. The class
+1 is considered as the positive, or desired outcome. By 〈x1,x2〉 we denote the
scalar product of vectors x1 and x2.

At first we consider the simplest, linearly separable case. Then, there exists
some hyperplane H which separates the positive from the negative data points.
This is called the separating hyperplane and it has the following form

〈w,x〉+ b = 0, (1)

where w is the normal vector to the hyperplane H and b ∈ R. In the linearly sep-
arable case there also exist two hyperplanes 〈w,x〉+b = −1 and 〈w,x〉+b = +1
that also separate the training sample and there are no data points between
them. The goal is to maximize the distance between them, which geometri-
cally equals 2

||w|| , hence, instead of this maximization one can minimize ||w|| (or
equivalently its square ||w||2 = 〈w,w〉) subject to constraints of the (simplified)
form

yi(〈w,xi〉+ b) ≥ +1 for i = 1, . . . , n, (2)

which are the consequence of linear separability.
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Hence, here we have a well-known quadratic optimization problem with linear
constraints. It has a corresponding dual problem of the form

max
αi

L(α) = max
αi

min
w

1

2
〈w,w〉+

n∑
i=1

αi [yi(〈w,xi〉+ b)− 1] (3)

= max
αi

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi,xj〉. (4)

where α = (α1, . . . , αn), αi ≥ 0 are Lagrange multipliers. See [15] for more
datailed description.

In case when the data points are not linearly separable, a small modifica-
tion is needed to handle with mislabeled examples. In such situation there are
introduced non-negative slack variables ξi, which measure the “degree of mis-
classification” of i-th example. The constraints become

yi(〈w,xi〉+ b) ≥ +1− ξi, ξi ≥ 0 for i = 1, . . . , n. (5)

The goal function is then increased by non-zero ξi and the optimization problem
becomes a kind of a trade-off between a wide margin and low error caused by
misclassification. Then the primal problem has the form

arg min
w,b,ξ

1

2
〈w,w〉+ C

n∑
i=1

ξi, (6)

subject to constraints (5). Constant C is the penalty coefficient, its large val-
ues pay more attention to the missclassified examples. The dual form is almost
exactly the same as in the separable case, slack variables ξi vanish from the for-
mulation and the only one difference is that Lagrange multipliers αi are bounded
by the penalty coefficient C i.e. 0 ≤ αi ≤ C.

2.2 Kernel trick

The so-called “kernel trick” owes its name to the application of kernel functions
in order to transfer the considered problem to high dimensional one, implicit
feature space, where we even do not need to compute the coordinates of the
training sample, but instead, we simply compute the scalar product between
the images of all pairs of examples in the feature space, what usually is easier
and computationally cheaper than explicit computation of the new coordinates.
Support Vector Machines is probably the most popular application of kernel
trick. Due to the fact that in the dual problem the data appears solely in the
scalar products, the application of the kernel trick is absolutely straightforward.
In general, we simply substitute those scalar products with some desired kernel
function.

Let us suppose that we have a mapping φ : Rm → T , which maps our
data to some other (possibly infinite dimensional) Euclidean space T . Then
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the only dependence on the data in the learning alogrithm would be through
scalar products 〈φ(xi), φ(xj)〉 in the new space T . Now, if there exists a kernel
function K, such that K(xi,xj) = 〈φ(xi), φ(xj)〉, then we may use only K in
the optimization and, what is tricky here, we do not need to know φ at all -
we only require that K is a positive-semidefinite, symmetrical kernel function,
which, based on Mercer’s theorem, represent the scalar product in the implicit
feature space T .

In case of the SVM, the (4) becomes

max
αi

L(α) = max
αi

[ n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi,xj)
]
. (7)

There are many possible kernel functions, but the most popular are

1. polynomial: K(xi,xj) = (〈xi,xj〉+ 1)d,
2. gaussian radial basis function (RBF): K(xi,xj) = exp(−γ||xi − xj ||2),
3. sigmoid: K(xi,xj) = tanh(α〈xi,xj〉+ 1).

In general, the parameters d, γ, α are used to adjust the degree of nonlinearity. In
this paper we will present the results using polynomial and RBF kernel functions.
We will compare it with the linear SVM (in fact, it might be also considered as
a kernel SVM with K(xi,xj) = 〈xi,xj〉).

3 Uplift Support Vector Machines

SVMs are designed primarily for classification, not probability modeling, so in
order to adapt the SVMs to the analyzed setting, we first recast the uplift mod-
eling problem as a three-class classification problem. This differs from the typical
formulation which aims at predicting the difference in class probabilities between
treatment and control groups.

Unlike standard classification, in uplift modeling we have two training sam-
ples: the treatment group, DT = {(xi, yi) : i = 1, . . . , nT } and the control group
DC = {(xi, yi) : i = 1, . . . , nC}, where xi ∈ Rm are the values of the predictor
variables, and yi ∈ {−1, 1} is the class of the i-th data record, m is the number
of attributes in the data, and nT and nC are the numbers of records in the treat-
ment and control groups respectively. Objects in the treatment group have been
subject to some action or treatment, while objects in the control group have not.

In the rest of the paper we will continue to follow the convention that all
quantities related to the treatment group will be denoted with superscript T

and those related to the control group with superscript C .
An uplift model is defined as a function

M(x) : Rm → {−1, 0, 1}, (8)

which assigns to each point in the input space one of the values +1, 0 and −1,
interpreted, respectively, as positive, neutral and negative impact of the action.
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In other words, the positive prediction +1 means that we expect the objects class
to be +1 if it is subject to treatment and −1 if it is not, the negative prediction
means that we expect the class to be −1 after treatment and +1 if no action
was performed, and neutral if the object’s class is identical (either +1 or −1)
regardless of whether the action was taken or not.

The proposed Uplift Support Vector Machine (USVM), which performs uplift
prediction, uses two parallel hyperplanes

H1 : 〈w,x〉+ b1 = 0 H2 : 〈w,x〉+ b2 = 0,

where b1, b2 ∈ R are the intercepts and if b2 ≥ b1 then the model is valid; in
Lemma 1 we will give sufficient conditions for this inequality to hold. The model
predictions are specified by the following equation

M(x) =


+1 if 〈w,x〉+ b1 > 0,

0 if 〈w,x〉+ b1 ≤ 0 and 〈w,x〉+ b2 > 0,

−1 if 〈w,x〉+ b2 ≤ 0.

(9)

Intuitively, the point is classified as positive if it lies on the positive side of both
hyperplanes, neutral if it lies on the positive side of hyperplane H2 only, and
classified as negative if it lies on the negative side of both hyperplanes. In other
words, H1 separates positive and neutral points, and H2 neutral and negative
points.

Let us now formulate the optimization task which allows for finding the
model’s parameters w, b1, b2. We will use DT

+ = {(xi, yi) ∈ DT : yi = +1} to
denote data points belonging to the positive class in the treatment group and
DT
− = {(xi, yi) ∈ DT : yi = −1} to denote points in that group belonging to

the negative class. Analogous notation is used for points in the control group.
Denote n = |DT |+ |DC |.

The parameters of an USVM can be found by solving the following optimiza-
tion problem, which we call the USVM optimization problem.

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT

−∪DC
+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT

−∪DC
+

ξi,2, (10)

subject to the following constraints

〈w,xi〉+ b1 ≥ +1− ξi,1, forall (xi, yi) ∈ DT
+ ∪DC

−, (11)

〈w,xi〉+ b1 ≤ −1 + ξi,1, forall (xi, yi) ∈ DT
− ∪DC

+, (12)

〈w,xi〉+ b2 ≥ +1− ξi,2, forall (xi, yi) ∈ DT
+ ∪DC

−, (13)

〈w,xi〉+ b2 ≤ −1 + ξi,2, forall (xi, yi) ∈ DT
− ∪DC

+, (14)

ξi,j ≥ 0, forall i = 1, . . . , n, j ∈ {1, 2}, (15)
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where C1, C2 are penalty parameters and ξi,j slack variables allowing for mis-
classified training cases. Note that ξi,1 and ξi,2 are slack variables related to the
hyperplane H1 and H2 respectively. We will now give an intuitive justification
for this formulation of the optimization problem.

Below, when we talk about distance of a point from a plane and point lying
on a positive or negative side of the plane we implicitly assume that the width
of the margin is also taken into account.

The situation is graphically depicted in Figure 1. Example points belonging
to DT

+ are marked with T+, points belonging to DT
−, respectively with T−. Anal-

ogous notation is used for example points in the control group which are marked
with C+ and C−.

In an ideal situation, we would want points for which a positive (+1) pre-
diction is made to contain only cases in DT

+ and DC
−, that is only points which

do not contradict the positive effect of the action. Note that for the remaining
points, which are in DT

− or in DC
+, the effect of an action can at best be neutral.

Therefore points in DT
+ and DC

− (marked T+ and C− respectively in the fig-
ure) are not penalized when on the positive side of hyperplane H1. Analogously
points in DT

− and DC
+ (marked T− and C+) which are on the negative side of

H2 are not penalized. Points in DT
+ and DC

− which lie on the negative side of
H1 are penalized with penalty C1ξi,1 where ξi is the distance of the point from
the plane (in fact, the true distance is equal to ξi

||w|| , but for simplicity we use
only ξi) and C1 is a penalty coefficient. Those penalties prevent the model from
being overly cautious and classifying all points as neutral (see Lemmas 2 and 3
in the next section). Analogous penalty is introduced for points in DT

− and DC
+

in the fifth term of (10). In Figure 1, those points are sandwiched between H1

and H2, and their penalties are marked with red arrows.
Consider now points in DT

+ and DC
− which lie on the negative side of both

hyperplanes, i.e. in the region where the model predicts a negative impact (−1).
Clearly, model’s predictions are wrong in this case, since if the outcome was
positive in the treatment group the impact of the action can only be positive
or neutral. Those data points are thus additionally penalized for being on the
wrong side of the hyperplane H2 with penalty C2ξi,2. Analogous penalty is of
course applied to points in DT

− and DC
+ which lie on the positive side of both

hyperplanes. Additional penalties are marked with dashed blue arrows in the
figure.

To summarize, the penalty coefficient C1 is used to punish points being on
the wrong side of a single hyperplane (red arrows in Figure 1) and the coefficient
C2 controls additional penalty incurred by a point being on the wrong side of also
the second hyperplane (dashed blue arrows in Figure 1). In the next section we
give a more detailed analysis of how the penalties influence the model’s behavior.

3.1 Properties of the Uplift Support Vector Machines (USVMs)

In this section we are going to analyze some mathematical properties of Uplift
Support Vector Machines (USVMs), especially in the context of influence of the
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H1

H2
T−

ξi,2

C+

ξi,2

T+

ξi,1

C−

ξi,1

T+

ξi,1ξi,2

T−

ξi,2ξi,1T+

C−

C+

T−

Fig. 1. The Uplift SVM optimization problem. Example points belonging to the posi-
tive class in the treatment and control groups are marked respectively with T+ and C+.
Analogous notation is used for points in the negative class. The figure shows penalties
incurred by points with respect to the two hyperplanes of the USVM. Positive sides of
hyperplanes are indicated by small arrows at the right ends of lines in the image. Red
arrows denote the penalties incurred by points which lie on the wrong side of a single
hyperplane, blue dashed arrows denote additional penalties for being misclassified also
by the second hyperplane.

parameters C1 and C2 on model’s behavior. One of the more important results
is how the ratio of penalty parameters C2

C1
directly influences the number of

records which are classified as neutral, or, in other words, how it influences the
distance between the two separating hyperplanes. This also sheds light on the
interpretation of the model.

Lemma 1. Let w∗, b∗1, b
∗
2 be a solution to the Uplift SVM optimization problem

given by Equations 10-15. If C2 ≥ C1 then b∗2 ≥ b∗1.

The proof of this and the remaining lemmas can be found in the in [10]. The
lemma guarantees that the problem possesses a well defined solution in the sense
of Equation 9. Moreover it naturally constrains the penalty C2 to be greater than
or equal to C1. From now on, instead of working with the coefficient C2, it will
be more convenient to talk about the penalty coefficient C1 and the quotient
C2

C1
≥ 1 determining how many times is C2 is greater than C1.

Lemma 2. For sufficiently large value of C2

C1
none of the observations is penal-

ized with a term involving the C2 factor in the solution to the USVM optimization
problem.
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Equivalently the lemma states that for a large enough value of C2

C1
, none of the

points will be on the wrong side of both hyperplanes. This is possible only when
the hyperplanes are maximally separated, resulting in most (often all) points
classified as neutral.

Lemma 3. If C1 = C2 = C and the solution is unique then both hyperplanes
coincide: b1 = b2.

We are now ready to give an interpretation of the C1 and C2

C1
parameters of

the Uplift SVM. The parameter C1 plays the role analogous to the penalty co-
efficient C in classical SVMs controlling the relative cost of misclassified points
with respect to the margin maximization term 1

2 〈w,w〉. The quotient C2

C1
allows

the analyst to decide what proportion of points should be classified as posi-
tive or negative. In other words, it allows for controlling the size of the neutral
prediction.

Note that this is not equivalent to selecting thresholds in data scored using a
single model. For each value of C2

C1
a different model is built which is optimized

for a specific proportion of positive and negative predictions. We believe that
this property of USVMs is very useful for practical applications, as it allows for
tuning the model specifically to the desired size of the campaign.

3.2 The Uplift Support Vector Machine optimization task

Let us now present the dual of the Uplift Support Vector Machine optimization
task and discuss methods of solving it.

We will first introduce a class variable transformation

zi =

{
yi, if (xi, yi) ∈ DT ,

−yi, if (xi, yi) ∈ DC .

In other words, zi is obtained by keeping the class variable in the treatment
group and reversing it in the control. Note that this is the same transformation
which has been introduced in [7] in the context of uplift modeling and logistic
regression.

This variable transformation allows us to simplify the optimization problem
given in Equations 10-15 by merging (11) with (12) and (13) with (14). The
simplified optimization problem is

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT

−∪DC
+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT

−∪DC
+

ξi,2,

subject to constraints

zi(〈w,xi〉+ b1)− 1 + ξi,1 ≥ 0 forall i = 1, . . . , n,

zi(〈w,xi〉+ b2)− 1 + ξi,2 ≥ 0 forall i = 1, . . . , n,

ξi,j ≥ 0, forall i = 1, . . . , n, j ∈ {1, 2}.
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We will now obtain the dual form of the optimization problem. We begin by
writing the following Lagrange function

L(w, b1,b2, αi, βi, ξi,1, ξi,2, ri, pi)

=
1

2
〈w,w〉+ C1

∑
+1

ξi,1 + C2

∑
−1

ξi,1

+ C2

∑
+1

ξi,2 + C1

∑
−1

ξi,2

−
n∑
i=1

αi
(
zi(〈w,xi〉+ b1)− 1 + ξi,1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉+ b2)− 1 + ξi,2

)
−

n∑
i=1

riξi,1 −
n∑
i=1

piξi,2,

where
∑

+1 and
∑
−1 denote sums over all examples in DT ∪DC for which zi = 1

and zi = −1 respectively; αi, βi ∈ R are Lagrange multipliers and ri, pi ≥ 0.
Now we need to calculate partial derivatives and equate them to 0 in order

to satisfy Karush-Kuhn-Tucker conditions. We begin by deriving w.r.t. w

∂L

∂w
= w −

n∑
i=1

αizixi −
n∑
i=1

βizixi = 0,

from which we obtain

w =

n∑
i=1

(αi + βi)zixi. (16)

We obtain the remaining derivatives in a similar fashion

∂L

∂b1
= −

n∑
i=1

αizi = 0,
∂L

∂b2
= −

n∑
i=1

βizi = 0, (17)

∂L

∂ξi,1
= C11[zi=−1] + C21[zi=+1] − αi − ri = 0, (18)

∂L

∂ξi,2
= C11[zi=+1] + C21[zi=−1] − βi − pi = 0. (19)

Plugging those equations back into the Lagrange function we obtain, after sim-
plifications,

L =
1

2
〈w,w〉 −

n∑
i=1

αi
(
zi(〈w,xi〉+ b1)− 1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉+ b2)− 1

)
.
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Substituting w from Equation 16 and simplifying further we get

L =
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizj〈xi,xj〉

−
n∑

i,j=1

(αi + βi)(αj + βj)zizj〈xj ,xi〉

− b1
n∑
i=1

αizi +

n∑
i=1

αi − b2
n∑
i=1

βizi +

n∑
i=1

βi

=

n∑
i=1

(αi + βi)−
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizj〈xi,xj〉, (20)

which we maximize over αi, βi.
Finally, from the assumption that ri, pi ≥ 0 and (18), (19) combined with the

KKT condition on nonnegativity of αi, βi and from (17) we obtain the following
constraints for the dual optimization problem

0 ≤ αi ≤ C11[zi=−1] + C21[zi=+1], (21)

0 ≤ βi ≤ C11[zi=+1] + C21[zi=−1], (22)
n∑
i=1

αizi =

n∑
i=1

βizi = 0. (23)

And the last thing that we mention in this section is the application of kernel
functions in order to obtain nonlinear model. In case of uplift Support Vector
Machines it is exactly the same as in the case of a standard SVM. We simply
substitute the scalar product in (20) with some symmetric, positive-semidefinite
kernel function

L =

n∑
i=1

(αi + βi)−
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizjK(xi,xj), (24)

while the Constraints 21 - 23 remain unchanged. As we mentioned before, in the
experimental evaluation we have used the polynomial (of degree d = 3) and the
radial basis function (with γ = 1) kernels.

The problem presented above we solve using the quadratic and convex solvers
from the CVXOPT library [16]. We also have developed dedicated solvers for the
Karush-Kuhn-Tucker (KKT) systems of equations needed to solve our USVM
optimization problems, but we do not present the details here.

4 Experimental evaluation

4.1 Evaluation of uplift models

Let us now discuss evaluation of uplift models using so called uplift curves. One
of the tools for assessing performance of standard classification models are lift
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Fig. 2. Example uplift curve for the survival-veteran dataset for Uplift SVM with
the linear kernel. The x-axis represents the percentage of the population to which the
action has been applied and the y-axis the net gain from performing the action.

curves (also known as cumulative gains curves or cumulative accuracy profiles).
In a lift curve, the x axis corresponds to the number of cases targeted and the y
axis to the number of successes captured by the model. In our case both numbers
will be expressed as percentage of the total population.

The uplift curve is computed by subtracting the lift curve obtained on the
control test set from the lift curve obtained on the treatment test set. Both curves
are generated using the same uplift model. Recall the number of successes on
the y axis is expressed as a percentage of the total population which guarantees
that the curves can be meaningfully subtracted. The interpretation of the uplift
curve is as follows: on the x axis we select the percentage of the population on
which an action is performed and on the y axis we read the difference between
the success rates in the treatment and control groups. A point at x = 100% gives
the gain in success probability we would obtain if the action was performed on
the whole population. A diagonal line corresponds random selection. The Area
Under the Uplift Curve (AUUC) can be used as a single number summarizing
model performance. In this paper we subtract the area under the diagonal line
from this value in order to obtain more meaningful numbers. More details on
evaluating uplift models and on uplift curves can be found in [3, 1].

Figure 2 shows uplift curves for survival-veteran dataset(short description
about this dataset is presented in the next paragraph) for Uplift SVM with
the linear kernel. It can be seen that targeting between 20% and 80% of the
population gives significant gains in net success rate over targeting nobody or the
whole population. It can be seen that applying the action only to some proportion
of the population leads to significant gains in net success rate. The curve in the
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figure have been generated by averaging over 32 random train test splits; the
same method, but with more splits, has been used for other experiments in this
section and is described in detail below.

4.2 Benchmark datasets and experiment setup

One of the major difficulties in working on the uplift modeling is the lack of
publicly available datasets. Despite the fact that control groups are quite com-
mon in clinical trails and marketing campaign, there are relatively few publicly
available datasets with reasonably large control group and at least several predic-
tors. Furthermore, clinical trials usually involve censored data and most machine
learning methods, including uplift modeling tools, do not directly allow for the
use of such data. But Rzepakowski and Jaroszewicz [17] demonstrated that, un-
der reasonable assumptions, one can easily apply uplift modeling to survival
data, without messing up the correctness of models’ decisions. Before we present
a very brief description of each dataset, we first explain how the conversion of
survival time to binary (positive/negative) outcome was performed. In order to
obtain a balanced class distribution we have used median of observed (censored)
survival times. All but one datasets was transformed this way. The only ex-
ception was the dataset colon lev recur, where third quartile was used as a
threshold. See [17] for more datailed description.

The first dataset called tamoxifen comes from a book on survival analysis
by Pintilie [18] and contains the data on therapy of breast cancer with a drug
tamoxifen. In this clinical trial the treated group received tamoxifen combined
with radio-therapy, while the control group received tamoxifen alone. We attempt
to model the target variable stat describing whether the patient was alive at the
time of the last follow-up. The dataset contains six predictor variables. Details
can be found in [18].

Two next datasets come from the R package called KMsurv. The burn dataset
describes patients who suffered from underwent burns. The body cleansing was
applied to patients in the treatment group while the control group had routine
baths. Occurrence of staphylococcus aureus infection was the negative outcome.
The second dataset is called hodg and it comes from clinical trail, where 43
patients underwent an allogeneic graft or an autologous graft (control group) as
a lymphoma treatment.

Additional datasets come from the another R package called survival. We
will not discuss them in details since full descriptions are easily accessible online.
The pbc dataset is the result of a study of primary biliary cirrhosis (PBC) of
the liver. 312 patients were randomly divided into the treated group (received
D-penicillamine drug) and the control group (placebo). The next dataset called
bladder contains the data about recurrences of a bladder cancer on 85 patients
who received either the thiotepa drug or placebo.
The colon data comes from a study where clinicians examined an adjuvant
chemotherapy for colon cancer. There are two types of treatment: levamisole
and levamisole combined with 5-FU (Fluorouracil). The control group received
placebo. Two types of outcomes were recorded: death and disease recurrence.
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dataset Linear RBF Poly

tamoxifen 0.0138 -0.0089 -0.0096
kmsurv-burn 0.0309 0.0336 0.0339
kmsurv-hodq 0.0691 0.0884 0.0789
survival-bladder -0.0358 -0.0431 -0.0441
survival-pbc -0.0138 -0.0105 -0.0114
survival-colon-death -0.0025 -0.0107 -0.0121
survival-colon-lev-death -0.0022 0.0048 0.0048
survival-colon-lev-recur -0.0174 -0.0204 -0.0226
survival-colon-lev-5fu-death -0.0045 -0.0008 -0.0018
survival-colon-lev-5fu-recur -0.0026 0.0007 0.001
survival-colon-recur -0.001 -0.0021 -0.0021
survival-veteran 0.0342 0.0396 0.0411

Table 1. Areas under the Uplift Curve for kernel Uplift Support Vector Machines.

Hence, we have two possible modeling targets and we analyzed it separately.
All in all, colon data eventually gives us six datasets: three therapies (two
treatment, one placebo) times two target attributes. Resulting datasets are called
respectively colon-death, colon-recur, colon-lev-death, colon-lev-recur,
colon-lev-5fu-death and colon-lev-5fu-recur.
Finally, the veteran data comes from a randomized clinical trial of lung cancer
where 137 patients were involved.

4.3 Performance evaluation of uplift SVM

We will now compare the performance of Uplift Support Vector Machines with
different kernel functions applied. As mentioned before, we used three of them:
linear (classic SVM), polynomial with degree of 3 and Gaussian radial-basis
function (with parameter γ = 1). Those parameters were not subject to tuning
procedure. The penalty parameter C1 in all models have been chosen from the set
{10−2, 10−1, . . . , 103}, while the proportion C2

C1
had 11 possible values uniformly

distributed in the range [1.0, 3.0]. For each grid point 5-fold cross-validation was
used to measure model performance.

Table 4.3 compares Areas under the Uplift Curve for Uplift SVMs with three
used kernel functions on all benchmark datasets. The areas are given in terms of
percentages of the total population (used also on the y-axis). Testing was per-
formed by repeating 256 times a random train/test split with 80% of data used
for training (and cross-validation based parameter tuning). The remaining 20%
were used for testing. Large number of repetitions reduces the influence of ran-
domness in model testing and construction, making the experiments repeatable.
Cases when a given method performs best are marked in bold.

It can be seen that both introduced nonlinear versions of uplift SVM do not
bring significant improvement, in fact, based on performed experiments, it is
hard to point out the winner. The reason of such behavior should be, however,
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subject to the further research. But we must remember that, even if the overall
performance is not satisfactory, the uplift modeling may still be useful, since it is
capable of selecting a subgroup of customers (patients) for which the campaign
(treatment) is successful.

5 Conclusions

We have presented an adaptation of Support Vector Machines to the uplift mod-
elling task. The proposed method has been analyzed theoretically including a
problem reformulation and properties that clarifies the interpretation of model
parameters. The Kernel trick was used in order to create a nonlinear classifiers.
Resulting algorithms were tested on real clinical trails datasets. The results of
experimental evaluation were good on some datasets, while the others were quite
unsatisfactory. The causes of this fact are the direction of future research. We
suspect that the proposed approach might suffer from the problem of an in-
stability when small changes of parameter values result in large changes in the
model behavior. Another way to improve the performance could be tuning of
the kernel parameters. Future research will also include a theoretical analysis of
the generalization properties.
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Abstract. We introduce a novel procedure for evaluating prediction of
protein-protein interactions. It takes into account fact that pairwise pro-
tein interactions form a larger interaction network. Our procedure guar-
antees that: a) true positives and true negatives of interacting proteins
are formed from the same elements (i.e. they have identical protein com-
position), b) there is strict separation of proteins between training and
test sets. This procedure was applied to previously developed MLPPI
(Multi-level machine learning prediction of protein-protein interactions)
method and established sequence-based methods. We performed evalu-
ation on high-quality small and medium size data sets containing pro-
tein interactions from Saccharomyces cerevisiae, Homo sapiens, and Es-
cherichia coli. Poor performance of all methods (AUC ROC below 0.6)
raises a question whether the goal of protein-protein interaction predic-
tion was correctly formulated.

Experimental code and data freely available at:
http://zubekj.github.io/mlppi/
(Python implementation, OS independent).

1 Introduction

Proteins are among the most important building blocks of living cells. They
are compound objects which can be described in multiple scales: protein pri-
mary structure is a linear (1D) sequence of amino acids residues, secondary
structure is a sequence of characteristic structural motifs formed along protein
chain, and tertiary structure is a full 3D structure of a protein molecule. Inter-
actions between proteins form complex signalling networks, which needs to be
reconstructed in as much details as possible in order to understand properties
of living organisms at the system level [12]. Various computational tools based
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on machine learning are being developed to facilitate this process. Most of these
tools focus on predicting binary interactions between pairs of proteins. Among
them methods using only 1D protein sequence have the widest applicability, since
this kind of information is available for all known proteins. Assessment and com-
parison of performance of such methods in a realistic setting is a non-trivial task
which requires special considerations.

In this work we focus on a thorough evaluation of a multi-level machine learn-
ing method for predicting protein-protein interactions, which was developed by
Zubek et al. [17]. It differs significantly from the established sequence-based
methods because it uses residue-residue interaction prediction as an intermedi-
ate step during protein-protein interaction prediction (hence it is called a multi-
level approach). In such fashion it introduces 3D structural information during
classifier training but utilises only 1D sequence during prediction. The impact
of this approach on prediction quality was not yet evaluated properly: so far
the method was tested only on a relatively small subset of proteins from Sac-
charomyces cerevisiae. The goal of this work is to compare the performance
of multi-level method by Zubek et al. [17] with that of classic sequence-based
methods [10] in a realistic setting using larger and more diverse sets of proteins
from different organisms: Saccharomyces cerevisiae (Yeast), Homo sapiens (Hu-
man), and Escherichia coli (the organisms were chosen based on the availability
of the data). In order to meet our goal we develop a novel evaluation schema,
which measures predictive power in the context of detecting real compatibility
between previously unseen proteins. We construct a balanced set of true negative
interactions using interaction network properties. We calculate the performance
metrics using modified multi-level cross-validation schema, which takes into ac-
count internal structure of the classified objects. This approach allows to avoid a
common problem in the evaluation of classifiers operating on compound objects,
when the same components occur in different quantities in training and test set
[11]. Our hypotheses are that: a) introducing indirectly 3D information in the
multi-level classifier is beneficial for its performance, b) our evaluation schema
reflects the real difficulty of protein-protein interaction prediction better than a
näive approach which often overestimate classifier performance.

The decision to focus on prediction utilising protein primary structure and do
not include methods based on protein functions [14, 13] in our comparison needs
justification. We believe that those two types of prediction methods have differ-
ent areas of application. First, functional features are generally available only for
a subset of proteins from well studied organisms. Second, this kind of description
is strongly dependent on biological pathways, which may be highly specific for a
given organism. With functional features we are targeting high-level evolution-
ary designed mechanisms, while with sequence-based features we can hope to
uncover basic physical properties of proteins, which govern their interactions.
Knowing those properties it would be possible to predict protein interactions
across different organisms and include some specific cases which distort normal
protein interaction networks, such as host-patogen protein interactions.
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In our experiments we obtained performance estimates much lower than usu-
ally reported, which is in line with our hypothesis. The multi-level approach was
only marginally better than other methods. Our results raise the need to re-
evaluate the usefulness of sequence-based features for protein interaction predic-
tion. Lack of success of both standard methods aggregating global features of the
sequence and the multi-level approach, which looks at the individual residues,
suggests that protein interactions may be a phenomenon occurring primarily on
a higher level and involving whole protein structures.

2 Materials and methods

2.1 Protein interactomes

We evaluated prediction methods by building classifiers separately for three or-
ganisms: S. cerevisiae,H. sapiens, and E. coli. Interactomes of all these organisms
are relatively well studied, however reconstructed protein interaction networks
are still far from being complete. For all three organisms we extracted 3D pro-
tein crystal complexes from Protein Data Bank (PDB) [2]. We were interested
in complexes scanned with X-RAY with the resolution below 3 Å. Homologous
structures were removed with 90% sequence identity threshold. The remaining
complexes were used as a reliable source of information on residue-residue inter-
actions (RRI) and protein-protein interactions (PPI). Residue-residue interac-
tion is defined as a pair of amino acid residues from two different protein chains
which are located within a close distance (4 Å) in the crystal structure. Protein-
protein interaction is a pair of proteins for which at least one residue-residue
interaction occurs. Only pairwise heterogenous protein interactions involving
two different proteins were of interest to us.

In the work by Zubek et al. [17] a special procedure was used to filter RRIs
and keep only the strongest interactions. The sliding window was moved along
protein sequence and centred on each interacting residue. The window covered 21
residues – one central interacting residue, 10 residues to the left from it, and 10
residues to the right of it. Then the number of all interacting residues (including
the central one) within the window was counted. Only when this number exceed
certain threshold value the central residue was considered strongly interacting.
We replicated this procedure in this work and set the threshold value to 15 (this
value was reported as an optimal in the original publication).

Relatively small sets of PDB-derived PPIs were complemented with large
scale data curated by Saha et al. [14]. They provided PPIs for S. cerevisiae
and H. sapiens in two flavors: GOLD dataset contained only interactions which
were confirmed independently with two different experimental methods, SILVER
contained interactions reported by two different sources (possibly using the same
experimental method). For S. cerevisiae and H. sapiens we used the available
GOLD datasets. For E. coli we constructed our own SILVER dataset using
iRefWeb interface [16].

PDB-based data sets were split into training and test set on the protein level
(no protein occurred simultaneously in the two sets). Numbers of PPIs in each
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set are given by Table 1. Proteins occurring in S. cerevisiae PDB training were
removed from S. cerevisiae GOLD test, proteins occurring in H. sapiens PDB
training were removed from H. sapiens GOLD test, and proteins occurring in E.
coli PDB training were removed from E. coli SILVER. Because data available
in PDB for E. coli was less abundant than for the other organisms, we did not
construct a PDB-based test set, using E. coli SILVER as the only validation of
prediction performance.

Table 1. Number of interacting protein pairs in the collected data sets.

Data set Training RRI Training PPI Test PPI

S. cerevisiae GOLD - - 1284
S. cerevisiae PDB 5531 211 174
H. sapiens GOLD - - 1325
H. sapiens PDB 2774 195 204
E. coli SILVER - - 2763
E. coli PDB 1698 61 -

2.2 True negatives

The available experimental data identifies only positive interactions. True neg-
ative interactions for training machine learning classifier need to be artificially
generated. Generating high quality negatives is generally very difficult. For RRIs
we selected sequence fragments from known protein complexes such that not a
single RRI occurred on those fragments. As the data was abundant and the risk
of generating a false negative by chance was low, we generated 10 times more
RRI negatives than the collected positives. This was done to represent class
imbalance expected in real data.

The problem was more complicated for PPIs. Common methods for gener-
ating negatives include drawing random pairs of biomolecules from all known
proteins found in a specific organism [14], or from the subset of whole proteome
constituted by proteins occurring in positive examples [4]. We strongly believe
that such methods have their inherent drawbacks, because they ignore network
properties of the underlying protein interactome. Imagine that we have a set of
9 positive PPIs over 10 proteins which form a star subgraph in the interactome.
The central protein in this subgraph has 9 interactions, the rest of the proteins
have 1 interaction each. Then we generate negatives by drawing random pairs
of these 10 proteins with equal probability. For each protein the probability of
being included in a formed pair is equal to: 1

10 + 9
10 ·

1
9 = 0.2. If we draw 9

pairs, the expected number of negative interactions for each protein is 1.8. In
such setting a classifier which recognises any pair containing the central protein
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as positive automatically reaches 0.83 precision score, even though it completely
ignores relative compatibility between two proteins. This scenario is biologically
realistic, in real interactomes occurrence of a significant number of hub proteins
is reported [15]. What is more, when the proteins are paired completely randomly
there is always a risk of generating a false negative, i.e. previously undiscovered
interaction. Because of this larger number negatives lower the quality of data.

As an alternative to uniform sampling we propose the following procedure:

– Let G1 be a graph representing positive examples. Denote V = v1, . . . , vn
as the set of its vertices. Each vertex in V represents a protein and each
edge vi, vj represents an interaction. Let [Deg(v1), . . . , Deg(vn)] be a vec-
tor containing degrees of vertices from V . Let G2 be a graph of negative
interactions. At first it has vertices identical to G1 and no edges.
– While there exist v such that Deg(v) > 0:

1. Find vertex v with the largest Deg(v).
2. Find vertex u if exist such that:

(a) There is no edge (v, u) in G1.
(b) u has as large Deg(v) as possible.
(c) Distance d(u, v) in G1 is as large as possible.

3. If u exist:
(a) Add edge (u, v) to G2.
(b) Deg(v)← Deg(v)− 1
(c) Deg(u)← Deg(u)− 1

4. else: Deg(v)← 0

Such schema of constructing the negatives is unbiased, i.e. the protein com-
position of the positives and the negatives remains identical. Every single protein
has the same number of positive and negative interactions. This forces the trained
classifier to predict meaningful biophysical interactions rather than predicting
general reactivity (the relative number of interactions) of a single protein. What
is also important, our algorithm favours protein pairs which are remote to each
other the interaction network, which reduces – but does not eliminate – the
risk of generating false negatives by chance. Using the described procedure we
generated the same number of negative PPIs as positive ones, thus obtaining a
balanced dataset.

2.3 Multi-level prediction of protein-protein interactions

We were interested in benchmarking the multi-level method developed by Zubek
et al. [17]. We will refer to it as MLPPI. It performs a two-stage prediction,
first predicting RRIs and then using the results to predict PPIs. RRI classifier
operates on sequence fragments of length 21 amino acid residues. Two frag-
ments sliced from two proteins sequences constitute a single observation. Sliding
window technique is used to extract fragments centred on each residue in a se-
quence. The result is a two dimensional matrix with dimensions corresponding
to proteins’ lengths. It can interpreted as a predicted potential contacts map.
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This matrix is processed with various feature extraction algorithms to produce a
fixed-length input for PPI classifier. General outline of this method is presented
as Figure 1.

Protein sequences

MNIFEMLRIDPVTETFAMLPG
EFNHTGELLAIYFKKDKINGY

.........

KRPTVSDLLKHKFITQIEGRA
DQCIVISGESGAGKTESAHLE

Pairs of sequence
fragments

RRI classifier

Predicted contact map

Image processingPPI classifier

Fig. 1. Schematic depiction of the multi-level protein interaction prediction pipeline.

For classification on both levels we used Random Forest algorithm with 300
trees and maximum tree depth limited to 7 nodes. Sequence fragments which con-
stituted input for RRI classifier were encoded using secondary structure symbols
predicted from sequence by PSIPRED [8]. Features extracted from the predicted
contact map to form an input for PPI classifier included:

– the mean and variance of values over the matrix (2),
– the sums of values in 10 best rows and 10 best columns (20),
– the sums of values in 5 best diagonals of the original and the transposed

matrix (10),
– the sum of values on intersections of 10 best rows and 10 best columns (1),
– the histogram of scores distributed over 10 bins (10),
– features of the connection graph: fraction of nodes in the 3 largest connected

components (3).

Features of the connection graph require further explanation. Predicted con-
tacts between residues were represented as a bipartite graph. Nodes in the graph
represented residues and edges represented predicted contact. To make the graph
more consistent with the observed experimental data, for each node we left only
3 strongest outgoing edges. We set the value of this threshold (3) following the
observation that in our PDB structures the mean number of interactions of a
single interacting residue is between 2 and 3. In such trimmed graph we cal-
culated fractions of nodes contained in 3 largest connected components. Those
values were also appended to the feature vector.
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2.4 Sequence-based methods

We compared our ensemble method with various sequence feature aggregation
schemas that are commonly used to construct features for machine learning
classifiers of protein interactions. To make the benchmarking results comparable
between different algorithms, we used the same classification method (Random
Forest) as for the MLPPI classifier. We benchmarked the following feature ag-
gregation schemas:

1. AAC – Amino Acid Composition [10]. Feature set is the set of frequencies
of all amino acids in the sequence.

2. PseAAC – Pseudo Amino Acid Composition [5]. Feature set consists of the
standard AAC features with k-th tier correlation factors added. The k-th
tier correlation factor represent correlation for residues separated from each
other by k residues. We calculate those correlations on HQI8 indices.

3. 2-grams [10]. Feature set comprises of frequencies of all 400 ordered pairs of
amino acids in the sequence.

4. QRC – Quasiresidue Couples [7]. A set of AAIndices is chosen. For each index
d combined values of this property d for a given amino acid pair are summed
up for all the pair’s occurrences over the full protein sequence. Occurrences
for pairs of residues separated from each other by 0, 1, 2 . . .m residues. In
effect, one obtains QRCd vectors of length 400 ×m. In this model we also
use HQI8 indices.

5. VD – vector deviations, a variation of Liu’s protein pair features [9]. The
method starts from encoding each amino acid in a protein sequence with 7
chosen physicochemical properties, thus obtaining 7 feature vectors for each
sequence. For each feature vector its “deviation” is calculated:

γdj =
1

n− d

n−d∑
i=1

xij × x(d+i),j j = 1, . . . , 7 d = 1, . . . , L

where xij is the value of descriptor j for amino acid at position i in sequence
P , n is the length of protein sequence P , and d is the distance between
residues in the sequence. For the purpose of the comparison, we tested this
method with the original 7 amino acid indices used by Liu. We tested differ-
ent values of L from 5 to 30 in a quick cross-validation experiment on our
data and chose L = 9 as yielding the best results.

2.5 Evaluation procedure

Created RRI training, PPI training, and PPI test data sets had their specific
purposes. RRI training and PPI training data was used only to train RRI clas-
sifier in MLPPI. It was not used by any other method. Then, all sequence-based
PPI classifiers and the PPI classifier of MLPII were trained and evaluated using
PPI test data.

Performance of PPI classifiers was evaluated through a repeated 2-fold cross-
validation (split between two folds of equal size). However, splitting data on
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the level of individual observations was unsatisfactory because training and test
sets could still overlap on the protein level, which introduced a huge bias into
evaluation results (similar observation was previously made by [11]). To fix this
problem we decided to perform split on the protein level. We used the following
algorithm:

1. Let X be a set of all observations (protein pairs), P set of all proteins, XA,
XB observations in the two splits, PA, PB protein in the two splits.

2. Initialise set XA ← ∅ to empty set, XB ← X.
3. While |XA| < |XB | repeat:

(a) Add a random observation x not included in XA to XA.
(b) Complement XA with all observations x = (x1, x2) such that x1 ∈ PA

and x2 ∈ PA.
(c) Let XB = {(x1, x2) : x1 /∈ PA ∧ x2 /∈ PA}.

The relations between all datasets used in the evaluation procedure are de-
picted by Figure 2.

PDB data GOLD/SILVER data

PDB training PDB test

RRI classifier training PPI classifier
cross-validationTrained RRI

classifier

Removing overlapping proteins

Fig. 2. Schematic depiction of relations between different data sets in the evaluation
procedure.

The above described procedure differs from the standard cross-validation,
since the number of observations in constructed test sets vary slightly, but this
variance is small, and does not influence the estimated performance. Such eval-
uation schema does not allow for any information leak: the datasets are always
balanced, and the classifier is tested on previously unseen proteins.

Using this form of cross-validation reduced the effective size of training and
test data, because in each split some observations need to be dropped. Average
size of a single cross-validation fold for all data sets is given in Table 2.

3 Results and discussion

We repeated cross-validation split 5 times and calculated average AUC ROC
(area under the receiver operating characteristic curve) over splits and folds.
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Table 2. Average size of a single cross-validation fold with estimated standard devia-
tion.

Data set CV fold size

S. cerevisiae GOLD 723± 7
S. cerevisiae PDB 116± 3
H. sapiens GOLD 763± 9
H. sapiens PDB 139± 3
E. coli SILVER 1591± 24

Results for different methods are presented as Table 3. As can be seen, AUC
ROC values are generally very low, never exceeding 0.6. This means that under
the conditions imposed by our strict evaluation procedure none of the methods
was especially successful. This is especially true for E. coli SILVER data set
for which the performance of all methods is at the level of a random baseline.
Because of this we excluded E. coli data set from further analyses.

Table 3. AUC ROC (Area under the receiver operating characteristic curve) score
for different methods. MLPPI – Multi-level Prediction of Protein Interactions, VD –
vector deviations, AAC – amino acid composition, PseudoAAC – pseudo amino acid
composition, 2-grams – bigram frequencies, QRC – quasiresidue couples.

Data set MLPPI VD AAC PseudoAAC 2-grams QRC

E. coli SILVER 0.50 0.51 0.51 0.50 0.49 0.48
S. cerevisiae GOLD 0.57 0.56 0.55 0.54 0.51 0.52
S. cerevisiae PDB 0.59 0.52 0.52 0.54 0.47 0.47
H. sapiens GOLD 0.56 0.53 0.53 0.54 0.51 0.52
H. sapiens PDB 0.56 0.49 0.53 0.53 0.52 0.53

To establish statistical differences between methods we employed combined
5x2cv F test proposed by Alpaydin [1]. It is a modified version of 5x2cv t test
introduced by Dietterich [6]. It strives to exploit the benefits of multiple train-
test splits while minimising the bias introduced by lack of independence between
splits. Each split i contains two cross-validation folds, which results in two values
p
(1)
i and p(2)i which are the differences between scores obtained by two methods.

They can be used to estimate mean and variance for each split separately:

p̄i =
p1i + p2i

2

s2i =
(
p
(1)
i − p̄

)2
+
(
p
(2)
i − p̄

)2
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The test statistic f has the following form:

f =

∑5
i=1

∑2
j=1

(
p
(j)
i

)2
2
∑5

i=1 s
2
i

Under the null hypothesis, when two methods have identical performance,
the f statistic is F distributed with 10 and 5 degrees of freedom.

Table 4. f statistic values and p-values for tests comparing MLPPI against the best
performing sequence-based method.

Data set Test f p-value

S. cerevisiae GOLD MLPPI vs VD 1.637 0.250
S. cerevisiae PDB MLPPI vs PseudoAAC 4.873 0.020
H. sapiens GOLD MLPPI vs PseudoAAC 2.074 0.160
H. sapiens PDB MLPPI vs AAC 2.604 0.097

We wanted to check whether our multi-level method performed better than
methods aggregating global characteristics of protein sequence. On each data
set separately we tested MLPPI against the best performing sequence-based
method. Test statistic values and p-values are given by Table 4. Although MLPPI
had the best AUC score on all four data sets, the difference was significant at
α = 0.05 level only for S. cerevisiae PDB – the data set on which MLPPI method
was initially devised and calibrated.

The difference between E. coli and other data sets needs special attention.
The performance of all predictors on E. coli was equal to a random baseline.
The number of examples from PDB complexes was smaller than for the other
organisms, while the number of examples from high-throughput experiments
was larger, albeit of possibly lower quality (see Table 1). To assess whether
the differences were also present in interaction network structure, we calculated
mean node degree for PPI networks of the three organisms. For H. sapiens
GOLD we obtained mean degree 2.01, for S. cerevisiae GOLD 2.05, and for
E. coli SILVER 4.76. Such difference in numbers suggests a possibility that
the data contained more gaps and false positives, making it impossible for a
classifier to learn any relations. On the other hand, E. coli is the only prokaryotic
organism among the three and its proteins may have different characteristics.
Brocchieri and Karlin [3] showed that median protein length in prokaryotes is
significantly smaller than in eukaryotes. They speculated that the difference may
be due to eukaryotic proteins being composed of multiple functional units and
additional sequence motifs acting as function regulators. This would definitely
affect interaction landscape, however it is difficult to state in what way. Further
research into this matter is needed before drawing conclusions.
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Results obtained in our study were much lower than usually reported for
methods concerning protein interaction prediction, even lower than in Park and
Marcotte [11] suggesting that the performance may be routinely overestimated.
Those differences are striking, for instance VD representation introduced by Liu
[9] was reported to obtain 0.86 AUC ROC on large yeast proteins interactions
data set. In the study of Nanni et al. [10] simple AAC representation achieved
0.72 AUC ROC on human PPI data set. Such differences were the result of
a different evaluation strategies which, implicitly, led to different problem for-
mulations. We believe that two conditions must be satisfied for an evaluation
procedure to correctly represent the problem of predicting meaningful interac-
tions between unknown proteins: a) proteins occurring in training and test sets
must be strictly separated, b) protein composition of true positives and true
negatives must be as close as possible (including characteristics such as node
degree). To our knowledge, ours is the only procedure so far satisfying these
conditions.

In the light of our strict evaluation schema and high-quality datasets the
problem of predicting meaningful interactions between proteins occurs to be very
hard, possibly even harder than generally expected. Success of simple sequence-
based methods was limited and introduction of local structural information in
our multi-level method yielded only minor and not statistically significant im-
provement. This raise a question as to how biological information regulating
interactions is encoded? We know that protein sequences describe and identify
proteins unambiguously, but is it sufficient to know proteins’ sequences to fully
characterise their behaviour? Our results suggests that the situation is more com-
plex than that. While contacts between single residues of two different proteins
occur only in interfaces, whole protein structures may be involved in mediating
those interactions.

4 Conclusions

In this work we evaluated some sequenced-based approaches to protein interac-
tion prediction. The main focus was put on the previously developed multi-level
predictor (MLPPI). While MLPPI predictor was not worse than global sequence
methods, obtained results are far from satisfactory. We believe that making a
real breakthrough in protein-protein interaction prediction requires exploiting
3D structural information.

Further research is needed to develop evaluation strategies for multi-level
biological input data and fully understand their properties. As our work demon-
strates, the impact of evaluation procedure on the results is never overempha-
sized. We showed that unbalanced train-test splits may be the source of false
results in previously published works. We believe that methodological unification
and futher discussion is needed for the development of the field.
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Abstract. Stepwise feature selection is one of the most popular vari-
able selection techniques for linear models. The procedure, however, is
computationally demanding, especially when the number of potential
variables is large. In our previous work we proposed a way to speed up
stepwise algorithm on large data, based on multidimensional indices and
a bound based on correlations between variables. This paper presents an
alternative proof of the bound and shows that it cannot be improved.

1 Introduction

Nowadays, many sophisticated methods for data analysis are available. However,
a very important issue is not only the modeling itself, but also finding relevant
variables to include in the model. Unfortunately, there are currently no methods
to assist the researcher (except his/her own intuition) in finding external sources
of relevant data such as public datasets available on the web.

Potentially, an answer to this problem could be Linked Open Data (LOD): a
project to make statistical data collected by various organizations, government
statistical offices, etc. publicly available on the internet in a way which is well
suited for automated access. The movement has recently gained momentum and
huge amounts of data became available online from sources such as Eurostat [1],
United Nations, International Monetary Fund, etc. The current state of Linked
Open Data can be seen in the diagram [2] which shows data sources and links
between them. More information on Linked Open Data can be found e.g. in [3–6].

We believe however, that in its current form Linked Open Data is not suitable
for statistical practice. Linking new datasets is based on purely syntactic criteria,
which can easily result in huge amount of unrelated data being downloaded to
researcher’s computer. Building models on such data would then be extremely
time consuming and prone to overfitting.

A solution, in our opinion, is a linking procedure based on statistical, not
syntactic properties. One example of such a solution (and at the same time the
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most relevant previous work) is Google Correlate [7–9], which given a query
dataset finds the most correlated Google query. The service has several limita-
tions: it is restricted to finding correlated Google queries and does not include
other publicly available datasets. Moreover it is only able to find single most
correlated variables, while in practice we are interested in building complete
statistical models.

In [10] we presented a method to build fast stepwise linear regression models
by using a multidimensional indexes to search for relevant variables. As the
multidimensional index we used FLANN (Fast Library for Approximate Nearest
Neighbors) [11, 12]. Since the indices only allow for finding single most correlated
variables, the stepwise procedure had to be rewritten using only this operation.
The method is based on forward stepwise regression (see e.g. [13]) but during
each step a spatial index is used to search for candidate variables; only those
candidates are then used for classical stepwise selection.

The paper is organized as follows. In Section 2 we give a brief summary
of [10], introduce the necessary notation, followed by a short introduction to
multidimensional indexing. Forward stepwise feature selection is explained in
Section 2.2 together with the theorem guaranteeing its correctness. Later, in
Section 3 a geometric proof of Theorem 1 is described, and a theorem is given
proving that the bound cannot be improved. Finally, in Section 4 we conclude
the paper.

2 Fast stepwise regression

The main idea of our approach to speed up the stepwise regression procedure is
based on Theorem 1, which was proved and discussed shortly in [10]. To present
this theorem let us start with introducing some notation and explaining the
stepwise regression procedure.

2.1 Notation

Lowercase letters will denote n-dimensional vectors. In particular, y ∈ Rn will
be the response variable of a linear model, r ∈ Rn a residual vector of the
currently considered model, and x ∈ Rn a predictor variable. The set of all
possible predictors will be denoted as X = {x1, . . . , xp}. Subsets of X will be
denoted as XI , where I ⊆ {1, . . . , p} is the set of indices of variables. So, if
I = {l1, . . . , lk}, then XI = {xl1 , . . . , xlk}.

In the paper we assume that each vector xi ∈ X as well as the response y are
normalized i.e. they have zero mean (x̄i = 0) and l2 norm equal to 1 (‖xi‖ = 1).

Let I = {l1, . . . , lk}. The projection of a vector y onto the space spanned
by XI = {xl1 , . . . , xln} will be denoted as ProjXI

y and by y ∼ xl1 + . . . + xlk
or y ∼ XI we will denote a linear model with y as response and xl1 , . . . , xlk as
predictors.

For brevity, correlations of specific vectors xi and xj will be written as ci,j =
cor(xi, xj) and correlation of the variable xi and current residual vector r as
cres,i = cor(r, xi).
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In Section 3 volumes of parallelotopes spanned by a set of vectors will be de-
noted as µk(·). For example, the volume of a k-dimensional parallelotope spanned
by {xl1 , . . . , xlk} is µk(xl1 , . . . , xlk).

2.2 Stepwise regression

The idea of stepwise regression was introduced in 1960 by Efroymson [14]. Here,
by stepwise procedure we mean forward stepwise selection (see e.g. [13]). The
algorithm works as follows. First we start with an empty model (y ∼ 1) and find
a variable (say xl1) which gives the lowest residual sum of squares (RSS) when
added to the model. The variable is then included in the model which becomes:
y ∼ xl1 . Then we check all two-variable models which include the variable xl1 ,
that is y ∼ xl1 +xi, for all xi ∈ X \{xl1}, select a variable xl2 for which the RSS
was lowest and add it to the model. We continue this procedure until the model
no longer improves according to an appropriate criterion (such as AIC [15] or
BIC [16]) or the maximum number of variables allowed in the model is reached.
The algorithm is presented in Table 1.

Algorithm: Stepwise

1) r := y
I := ∅

2) For k = 1, . . . , kmax:
1. For each i ∈ {1, . . . , p} \ I:

compute the residual of the model obtained
by adding xi to the current model: ri = y − ProjXI∪{i}y

2. Find lk = arg mini∈{1,...,p}\I ri
T ri,

3. If the model: y ∼ XI∪{lk} is better than y ∼ XI :
Add lk to I: I := I ∪ {lk} and goto 2)

else break.

Fig. 1. The stepwise regression algorithm

The main problem with the stepwise algorithm is that in each iteration it
requires building as many models as there are possible predictors (although some
work can be shared between all models in some circumstances) and, as a result,
becomes very inefficient for datasets with a large number of variables, such as
the ones that may be obtained using Linked Open Data.

2.3 Multidimensional indices and correlations

To speed up the stepwise procedure described in Section 2.2 we proposed [10]
an algorithm which limits the number of models built in each iteration, by using
multidimensional indexing. We will now summarize the results of that paper.

A multidimensional index can be used to store a large number of points from
an n-dimensional Euclidean space. Afterwards, we can use the index to quickly
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answer two types of queries: (1) nearest neighbor queries, where given a query
vector, find k nearest vectors in the index, and (2) range queries, where given
a query vector and a radius, find all points within the given radius from the
query. As a multidimensional index we used the FLANN library [11] which is
very fast but gives approximate results and Ball Trees (see e.g. [17]) which are
much slower, but give exact results.

A key observation is that, for appropriately normalized vectors, searching for
a nearest neighbor corresponds to looking for the most correlated vector. Let
xi, xj be vectors with zero mean and l2 norm equal to 1 (i.e. x̄i = x̄j = 0 and
‖xi‖ = ‖xj‖ = 1), then

‖xi − xj‖ =
√

2− 2〈xi, xj〉 =
√

2− 2cor(xi, xj).

Due to the above, in order to search for a vector most correlated with a given
query vector x we need to normalize it

x′ =
x− x̄
‖x− x̄‖

, (1)

and perform a nearest neighbor search for both x′ and −x′.

2.4 Fast stepwise regression

The main result of the paper [10] was to show how to quickly build a stepwise
model on data with a large number of indexed variables. Here we restate this
result briefly, starting with the following theorem.

Theorem 1. Assume that the variables xl1 , . . . , xlk−1
currently in the model are

orthogonal, let r = y−Proj{xl1
,...,xlk−1

}y denote the residual vector of the current

model and take two variables xlk , xl′k . Then

‖y − Proj{xl1
,...,xlk−1

,xl′
k
}y‖ 6 ‖y − Proj{xl1

,...,xlk−1
,xlk
}y‖ (2)

implies

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} >

|cres,lk |√
1−

k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

. (3)

Suppose we considered xlk as a candidate for the model and computed the
residual sum of squares for it. Theorem 1 states that if any variable is better
than xlk , then it must be correlated to a sufficient degree either with the current
residual vector or one of the predictors already in the model. This condition
can easily be translated into a series of range queries to the index. The query
points are ±r, where r is the current residual and ±xli , where xli are variables
currently in the model. The query radius is given by the right hand side of (3).
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The algorithm for fast stepwise regression is given in Figure 2. Lines 2 and
3.2 use a nearest neighbor query to the index, and lines 3.5 and 3.6 use range
queries. The speed up comes from using the stepwise procedure only on the
candidate set C which can be efficiently obtained using the multidimensional
index.

Algorithm: Fast stepwise

1) r := y
I := ∅

2) Find a variable xl1 ∈ X most correlated with r
and add its index l1 to the active index set I := I ∪ {l1}

3) For k = 1, . . . , kmax:
1. Compute the new residual vector r = y − ProjXI y
2. Find a candidate variable index uk ∈ {1, . . . , p} \ I

such that xuk is most correlated with r
3. Initialize the candidate index set C := {uk}
4. η :=

|cor(r,xuk
)|√

1−
∑

li∈I
cor(xli

,xuk
)2+|I|cor(r,xuk

)2

5. C := C ∪ {i ∈ {1, . . . , p} \ I : ‖xi − r‖2 6 2− 2η}
6. For j = 1, . . . , k − 1:

C := C ∪ {i ∈ {1, . . . , p} \ I : ‖xi − xlj‖
2 6 2− 2η}

7. Find the best variable xlk in XC using an iteration
of stepwise procedure

8. Add lk to the current active index set: I := I ∪ {lk}

Fig. 2. The fast stepwise regression algorithm based on a multidimensional index.

3 Geometric approach

In [10] a proof of Theorem 3 was given, which was based on linear algebra tech-
niques. In this paper we would like to show a different approach concentrating on
a geometric structure of variables and correlations between them. The geometric
proof is based on the following lemma.

Lemma 1. If adding the variable xl′k to the model decreases the residual sum of
squares more than adding xlk , i.e.

‖y − Proj{xl1
,...,xl′

k
}y‖ 6 ‖y − Proj{xl1

,...,xlk
}y‖, (4)

then the following inequality is satisfied

c2res,lk

1−
k−1∑
i=1

c2li,lk

6
c2res,l′k

1−
k−1∑
i=1

c2li,l′k

.
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To prove Lemma 1 let us first state two facts:

FACT 31
For any x1, . . . , xn ∈ Rn and matrix X = [x1| . . . |xn] we can find a rotation

matrix R such that RX is upper triangular.

FACT 32
The volume of a parallelotope spanned by vectors x1, . . . , xn ∈ Rn is equal to

µn(x1, . . . , xn) = det([x1| . . . |xn]).

Let us now back to the proof of lemma 1.

Proof (Proof of lemma 1). First let us notice that

‖y − Proj{xl1
,...,xlk

}y‖ =
µk+1(r, xl1 , . . . , xlk)

µk(xl1 , . . . , xlk)
. (5)

Due to Fact 31 and the fact that without loss of generality we may assume
the vectors xl1 , . . . , xlk−1

already added to the model to be orthogonal, we can
rotate matrices [r|xl1 | . . . |xlk ] and [xl1 | . . . |xlk ] such that matrices M1 and M2

are obtained with respectively only k + 1 and k nonzero rows.

M1 =



z 0 · · · 0
cres,lk

z
0 1 · · · 0 cl1,lk
...

...
. . .

...
...

0 0 · · · 1 clk−1,lk

0 0 · · · 0

√
1−

c2res,lk
z2 −

k−1∑
i=1

c2li,lk

0 0 · · · 0 0
...

...
...

...
...


,M2 =



1 · · · 0 cl1,lk
...

. . .
...

...
0 · · · 1 clk−1,lk

0 · · · 0

√
1−

k−1∑
i=1

c2li,lk

0 · · · 0 0
...

...
...

...


,

where z = ‖r‖. Due to Fact 32 the volumes in Equation 5 can be calculated as
follows

µk+1(z, xl1 , . . . , xlk) = detM1 =

√√√√z2(1−
k−1∑
i=1

c2li,lk)− c2res,lk ,

µk(xl1 , . . . , xlk) = detM2 =

√√√√1−
k−1∑
i=1

c2li,lk .

And then equation (5) can be written as

‖y − Proj{xl1
,...,xlk

}y‖ =

z2(1−
k−1∑
i=1

c2li,lk)− c2res,lk

1−
k−1∑
i=1

c2li,lk

,
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which combined with (4) leads to

c2res,lk

1−
k−1∑
i=1

c2li,lk

6
c2res,l′k

1−
k−1∑
i=1

c2li,l′k

.

As we can see the above proof is based on the geometric structure of the variables
of a linear model. The rest of the proof of theorem 1 is the same as in [10]. We
restate it below for the sake of completeness.

Proof (Proof of Theorem 1). If for any i = 1, . . . , k − 1:

|cli,l′k | >
|cres,lk |√

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

then the inequality is true. Otherwise for all i = 1, . . . , k − 1:

|cli,l′k | <
|cres,lk |√

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

(6)

and we need to show that this implies |cres,l′k | >
|cres,lk |√

1−
k−1∑
i=1

c2li,lk
+(k−1)c2res,lk

. Notice

first that the inequalities (6) imply

1−
k−1∑
i=1

c2li,l′k
>

1−
k−1∑
i=1

c2li,lk

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

. (7)

Using inequality (7) and Lemma 1 we get the desired result:

c2res,l′k
> c2res,lk

1−
k−1∑
i=1

c2li,l′k

1−
k−1∑
i=1

c2li,lk

>
c2res,lk

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

.

3.1 Optimality of the constraint

We will now show that the inequality (3) in Theorem 1 cannot be improved.
This is illustrated graphically in Figures 3 and 4 and proved in Theorem 2.

Figures 3 and 4 present results on simulated data illustrating Theorem 1.
Each point in each figure corresponds to a single simulation run, where random
vectors were drawn, normalized and values of both sides of the bound calculated.
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Fig. 3. Illustration of theorem 1 for adding 2nd variable for n = 4. Presented points
correspond to vectors satisfying theorem assumptions and dashed red line is identity.

The first simulation (Figure 3) was performed as follows. The first predic-
tor xl1 was sampled as a normally distributed vector of a given length n = 4,
then the response variable y was built as a sum of the vector xl1 and some nor-
mally distributed noise. Two other vectors were then sampled similarly to xl1 .
The better of them (in the sense of lower RSS) was chosen as xl′2 , the worse

as xl2 and the values max{|cl1,l′2 |, |cres,l′2 |} and |cres,l2 |/
√

1− c2l1,l2 + c2res,l2 were

calculated. Then results were plotted as a scatterplot. The red dashed line corre-
sponds to identity, so all vectors for which the inequality max{|cl1,l′2 |, |cres,l′2 |} >
|cres,l2 |/

√
1− c2l1,l2 + c2res,l2 is satisfied lie above that line. As we can see, vectors

tend to get arbitrarily close to the line, suggesting that the inequality is tight.

The second simulation (Figure 4 ) is very similar, but instead of adding the
second variable we add the third one. Moreover n = 5 was chosen. First, two
variables xl1 and xl2 ware sampled and orthogonalized, then y was calculated as
the sum of xl1 , xl2 and a normally distributed noise. Then two more variables
were sampled, and the better one was used as xl′3 and the worse as xl3 . Again,
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Fig. 4. Illustration of theorem 1 for adding 3rd variable for n = 5. Presented points
correspond to vectors satisfying theorem assumptions and dashed red line is identity.

the values max{|cl1,l′3 |, |cl2,l′3 |, |cres,l′3 |} and |cres,l3 |/
√

1− c2l1,l2 − c
2
l1,l3

+ c2res,l3
were calculated and plotted in the figure. Again, points get arbitrarily close to
the line, suggesting tightness of the bound. The theorem below proves that this
is indeed the case.
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Theorem 2. The inequality

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} >

|cres,lk |√
1−

k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

form theorem 1 cannot be improved.

Proof. To prove the theorem it is enough to find vectors xlk and xl′k such that

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} =

|cres,lk |√
1−

k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

Let xlk = 1√
k

r
‖r‖ + 1√

k
xl1 + . . . + 1√

k
xlk−1

and xl′k = xlk , then xlk is prop-

erly normalized (x̄lk = 0, ‖xlk‖ = 1). Due to the fact that r, xl1 , . . . , xlk are
uncorrelated, the following correlations are equal to

cres,lk = cres,l′k =
1√
k
,

cli,lk = cli,l′k =
1√
k
,

thus

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} =

1√
k

=
|cres,lk |√

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

.

4 Conclusions

The paper presents an alternative, geometric proof of theorem enabling finding
stepwise regression model faster on large data sets, presented in paper [10]. It
also shows that the bound in this theorem cannot be improved. Paper discusses
stepwise regression with no penalties, which is left for the future research.
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